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This document presents an analysis of B-splines, especially uniform B-splines. It explains the nature of B-
splines and how they are constructed, and also how B-splines can be merged, joined, and separated. The nature
of B-splines is presented mathematically and geometrically. Methods for converting B-spline control points to
Bezier control points are also presented, as well as emulating arbitrary curves by means of B-splines. A number
of algorithms to implement B-splines is presented in an Appendix. The document also contains an appendix
discussing Bezier curves and splines.

1. Introduction

In general, a mathematical spline is a piecewise polynomial function defined to “fit” a sequence of points in
some way. If the spline passes through the points, it is said to be an “interpolation”; if it passes near the points it
is said to be an “approximation”. If a spline passes through some points but near others, it is proper to call it an
approximation since passing through a point is also passing near that point, but passing through all the points is a
special case of passing near the points, and in that case the spline is called an interpolation. It is also possible to
define a one-piece polynomial spline of degree one less than the number of points. However, in practice, doing
so is not a viable option because polynomials of high degree tend to oscillate under some conditions, and adding
or removing points changes the degree of the polynomial and therefore the nature of the whole spline (adding or
removing points associated with a spline should not change the nature of the whole spline). In addition, there is
a limit to the degree of a polynomial that can be processed by computer systems. As a good compromise,
therefore, piecewise polynomial splines of degree three are preferred.

By definition, a mathematical spline must be continuous at all points, but need not necessarily be smooth at all
points. Typically, however, splines are at least once continuously differentiable (C").

B-splines are a particular set of general mathematical splines, and all (polynomial) splines can be converted to a
series of connected Bezier curves (and their points) of corresponding degree.

2. Definition of a B-spline

A B-spline requires a number of defining points (control points) and an ordered set (knot set) of non-decreasing
real (R) numbers (knots). Also, the degree, d, of the polynomial involved in the spline needs to be specified.
The first control point is traditionally numbered zero; the last control point is numbered n. The control points
are represented by P; [i=0, -, n; i € Z]. There are therefore n + 1 control points. Each knot, after the first d and
before the last d knots, corresponds to a point (knot point) on the spline. Knot points are typically not identical
to the control points. The first knot corresponding to the first knot point is represented by ¢y, and the last knot
corresponding to the last knot point is represented by ¢,.1-4. There are d knots before to, and d knots after t,+1-a
that do not correspond to a knot point. Therefore, the knot set is {(t-a, ti-a, tr-a, "', to, t1, **, tuti-ds Lusa—d> "5 Lur1)
(only the knots shown in bold blue correspond to a knot point). Note that a knot set is sometimes called a “knot
vector” in other publications, even though it is not a mathematical vector — a vector has magnitude and
direction, which does not apply to knot sets. The n + 2 + d knots satisfy the following inequalities.

ti <t [i=—d ~, ni€T7Z] (1)

The actual B-spline curve is a function S of 7 [t < <t..4 t € R] defined by a sequence of (n + 1 — d) continuous
piecewise polynomials (spline segments) of degree d [d > 0], where each polynomial segment is defined between
S(2;) and S(#;+1) [i=0, -, (n—d); i € Z]. Each S(¢;) [i=0, -, (n+1—-d);i € Z] is a knot point. S must be continuous at
each knot point, but need not be continuously differentiable. However, S is typically at least once continuously
differentiable (C'V) at each knot point. Note that n > d. S typically approximates (passes near) the control
points.

Each spline segment is derived from a basis function B of ¢, and requires d + 1 control points in its definition. A
basis function is itself a continuous polynomial function of d + 1 segments.

The basis functions, B; 4, for a d™ degree B-spline and a knot set {t-4, -, t,+1) are defined by the Cox-deBoor
recursive equations as follows.

t—t

B (1) = 1 [, <t<t,]
R0 [otherwise]

B ()= ( it jBi,d—l )+ (MJB”LL] () LERILi=—d -~ (n+1;i€Z] (2)

i+d i i+d+l i+l

During the evaluation of equation (2), the result of a division by zero is deemed to be zero. Different definitions
of basis functions define different kinds of splines (not only B-splines) — only the above definition of basis
functions defines a B-spline. Note the inequality signs of the interval of ¢ in the definition of B;(#). Some



publications incorrectly have #; < ¢ < t;4, for the interval, which can produce incorrect results in some cases if the
basis functions are evaluated directly. However, the interval #; < ¢ < t;4, is also correct.

Note that some publications incorrectly refer to the basis functions as “blending functions”; blending functions
are derived from the segments of a basis function but are not necessarily the basis functions themselves.

Using the basis functions defined above, a B-spline curve, S, of degree d is defined as follows.

S(t) = iBi—d,d(t)Pi [to<t<twiat€R]I[dEZ;n>d] 3)

i=0

Note that the subscript i — d of B,_,« can be a negative integer. However, if the knot set is relabelled so that the
first knot is labelled ¢, rather than ¢, then equation (3) is equivalent to

S() =Y B (OF, Wusisiu€RIWEZ nzal (3

i=0

which is what is presented in most publications, sometimes without mentioning that the interval for ¢ begins with
tq (rather than #)) and ends with #,.;.

Given equation (3) above, a third-degree (d = 3) B-spline curve determined by four (n = 3) control points with
the knot set {0, 1, 1.5, 2,3, 4,5, 5.7) would be defined as

S([) = Bf3,3([)P() + B—L}([)P] + qu([)Pz + B()73(t)P3 [2<t<3;t € R]
Note that if n = d, then S represents only one spline segment.

A second-degree (d = 2) B-spline curve determined by five (n = 4) control points with the knot set (-3, -1.2, 0,
3,3.6,4,5, 6) would be defined as

S(?) = B2,(6)Po + Bo12()P1 + Bo2(t)P2 + Bi2(6)Ps + Boa(H)Ps [0<1<4;t € R]
A B-spline curve of degree d has continuity at least C“™".
Ifti —ti=c [c € R][i=—d, - n; i € Z] then the B-spline is said to be uniform, otherwise it is said to be non-

uniform.

2.1 Uniform B-splines

Uniform B-splines require further restrictions to the definition of a general B-spline. The restrictions are
tim—ti=c [cER|[i=—d,~mic€Z] (4)
ti<ti [i=—d, =, ni€Z] (5)

Typically, ¢ = 1 and #, = 0, therefore the knot set (¢t-4, -, t,+1) consists of consecutive integers, allowing
calculations to be carried out more easily. The typical case will be assumed for uniform B-splines. This implies
that the substitution ¢ = j is allowable, alleviating the need to explicitly specify a knot set. Also, because of the
restrictions of uniform B-splines, the following equation can be deduced

Bju(t) = Bou(t — 1)) /€21  (6a)
With ¢ = j (the typical case), the equation above becomes
Bja(t) =Bout—j) €zl  (6b)

The equation above (6b) allows all the basis functions for a uniform B-spline to be expressed in terms of By As
a result, a uniform B-spline curve, S, of degree d can be defined as

S(t)zzBO,d(t_i+d)Pi [0<t<(n+1-d);teR;n>d (7)

i=0

which is deduced from equations (3) and (6b).



2.1.1 Basis Functions
The basis functions of a uniform B-spline of degree d can be deduced from equations (2) and ¢ = as

1 [i<t<i+]] t—1i i+d+1-1t )
_ = _ =|—|B rerT "B [i€Z;teR] (8)
Bo() {0 otherwise] | 24 ® ( y jB (t) +( y ]Bwl,d-l(t) t

Equation (8) is further reduced by equation (6b) as follows

1 [i<t<i+]] t—i i+d+1-t )
B (1) = B .(t)=|—1B,, (t-i)+|————"|B (t—i-1) i€Z;t€R]  (9)
0(D) {0 [otherwise] 0 (1) [ p ) 0,a-1( l)"‘( p j gt —i=1)

Notice that, due to equation (7), only calculations where i = 0 for B;, are required. Therefore, the following
equation can be used instead of equation (9).

1 [0<zt<1] ¢ d+1-t
— - | £ er- =" _ [t € R] 10
By, (t) {0 lofherwise] B, ,(t) (ijo’dl(t)+( y jBMI(f G (10)

It was mentioned earlier in this document that the basis functions are polynomials. To see this, the recursive
function By (equation (10)) needs to be expanded out to an explicit function. The expansion will be illustrated
by an example where d = 3 (i.e. By 3(¢) will be expanded).

Since Bo;(¢) requires Bo(¢) which requires By,i(¢), Bo,i1(¢) will be expanded first.

t [0<¢t<1]
By, (1) = By () + (2= t)Byy(t = 1) =12 —t [1<t<2] (11)
0 [otherwise]

When expanding By o(¢ — 1), it is important to substitute ¢ — 1 into the range 0 < ¢ <1 of By,(?), thus, 0 <zt <1
becomes 0 < (# — 1) < 1 which, by adding 1 to all terms of the inequation, is equivalent to 1 < ¢ < 2.

;—2 [0<t<1] ;2
- [0<t<1]
-y n<r<2 |?
2 - 2-D+@-0(-1
_[L 3-t IR P ~ [1<t<2] 1
B, (1) = (2]30,10) +( ; ij(r D=1G=0=D [, 5= 2 (12)
: G- [2<t<3]
G-t 2 =
2 (23] 0 [otherwise]
0 [otherwise]

Notice that the two middle ranges (1 < ¢ < 2) of the third term in the equation above have been combined in the
fourth term. And finally,

w

2_ [0<t<1]
rR-0+1G-n(t-1) 1<t<2]
: <
1(36;)2 [2<t<3]
Bo,3(t) = (éjBo,z(t) + (%}Bol(t -h= w I<z<2]
. <
G- -DB-+@-n(t-2) [2<t<3]
6
(46—t)3 [3<t<4]
0 [otherwise]



Expanding the equation above into polynomials and combining the same ranges results in

t3

0<tr<l1
p: [ ]

3 2
3¢ +12t6 12t + 4 l<r<2]

B .(f) = 3 2 _ (13)
(1) =43¢ 24t6+60t 44 D<i<3)

t +12t6 48t + 64 [3<<4]

0 [otherwise]

Equation (13) is the explicit piecewise polynomial basis function mentioned previously, which can be used with
equation (7) to define the desired uniform B-spline curve.

In this example, where d = 3, equation (7) becomes

()= Byy(t—i+3)P, [05i<@-2ir€Rinza]  (14)

i=0

where Bs(?) is given by equation (13). Note that, for a uniform B-spline curve, equation (7) is equivalent to
equation (3) which is the formal definition of a B-spline curve. Equation (7) can be used instead of equation (3)
because the basis functions, B;q[i € 7], all have identical shape but are shifted one unit along the positive X-axis

because of the uniformly spaced knots. Therefore, if the shifted basis functions are accounted for (as they are in
equation (7)), only one basis function need be used.

The following diagram (Figure 2-1) is a plot of the basis function By (solid curve). The four one-piece
functions (broken curves) that combine to create the single piecewise basis function are shown for context.

The Cubic Uniform B-spline Basis Function By 3
1 ] \ ] 7 ]
\ B

\
s (=36 + 127 — 12t + 4) |
\

1 s (38 =247 + 60t — 44)

t=2

Figure 2-1

In general, a basis function of degree d will have d + 1 non-zero piecewise segments.

Figure 2-2, below, shows an example of how eight basis functions (B-;3, ***, B43) are combined with eight
control points (Po, -, P7) to form a uniform third-degree B-spline curve using equation (3).



Diagram of: S(f) = B_s 5(t)Po + B_o3(O)P+1 + B_1 5(t)P2 + Bos(t)Ps + Br 3(t)Ps + Bas(t)Ps + B3 5()Ps + Bas(t)P7 [0 <=t<=5]

S(f) [0<=1<=5]

0 Bss() x Py
+

0 Boos(1) *P
+

0 By xP,
+

0 Box(t)  xP3
+

0 Bis(t) xPy
+

0 Bas(t)  xPs
+

0 Biy() P
+

0 Bixf) xP;

t=0 t=1 t=2 t=3 t=4 t=5
Figure 2-2

As shown in the diagram above, the various basis functions are the same curve shifted along the T-axis. The
first shaded column, from ¢ = 0 to ¢ = 1, defines the first spline segment of the B-spline curve, the second
column, from ¢ =1 to ¢ = 2, defines the second spline segment, and so on. Altogether, the B-spline curve consists
of five spline segments. Notice that for each spline segment, only four control points contribute towards the
definition of that segment (in general, d + 1 points contribute); the other control points are multiplied by zero.
So, for example, at ¢ = 2.5, S(2.5) = 0Py + OP, + '4(0.125)P, + (2.875)P5 + /5(2.875)P4 + /(0.125)Ps + 0P +
OP;, which is equivalent to S(2.5) = (0.125)P, + 5(2.875)P5 + /4(2.875)P4 + /5(0.125)Ps. Most of a large
number of control points (relative to the degree of a B-spline curve) for a given ¢ value will be multiplied by
Zero.

2.1.2 Blending Functions

Equation (3), or the equivalent equation (7) for a uniform B-spline, is sufficient to define the B-spline curve
mathematically. However, because the basis functions turn out to be zero for most of a large number of control
points, equation (3) (or equation (7)) is not an efficient way to implement a B-spline in a computer program; the
multiplication of many control points by zero is an unnecessary overhead. The following paragraphs will
present an alternate definition of a uniform B-spline curve suitable for implementing in a computer program.

As shown in section 2.1.1, only d + 1 consecutive control points are needed to define each spline segment (d is
the degree of the B-spline curve). Each point of a spline segment of a uniform B-spline curve is therefore a
weighted combination (or “blending”) of d + 1 consecutive control points; the weighting is defined by d + 1
functions, i, --*, fa+1, called blending functions. It is desirable to have the domain of each blending function
the same; a domain of real numbers between zero and one is preferred. Also, the d + 1 blending functions are the
same for every d + 1 consecutive sequence of control points. In summary, the following is desired.

Sisi(u) = 1()P; + Lo()Piy + -+ + Lari(W)Piid [0<u< 1l u ER][i=0, -, (n-d); i € Z] (15)



where S is the (i+1)™" spline segment of a uniform B-spline curve of degree d with n + 1 control points (i begins
with zero). The blending functions are derived from the basis functions as explained below.

Looking at Figure 2-2, above, notice that each basis function is composed of the same four one-piece curves
shifted along the T-axis. Altogether, therefore, there are only four (in general, d + 1) distinct curves. The
situation is illustrated in Figure 2-3 below.

The Cubic Uniform B-spline Basis Function By 3
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0.5

!

-0.5 L 1
-1 t=0 t=1 t=2 t=3 t

1
IS
o

Figure 2-3

The diagram above depicts By; with its four non-zero segments, Bo 3,1, Bos2, Boss, Bosas, in different colours.
From equation (13),

Bosa(t) = Ve(—1* + 122 — 481+ 64) = V(4 — 1)’ [3=1<4]  (16)
Bosa(f) = V(3 — 247 + 60t — 44) [2<1<3] (17)

Bojsa(t) = V(=38 + 126 — 12t +4) [1<:<2] (18)
Bosa()=Ve() 10=e<1) (19)

Note that it is desirable that the upper end of the intervals of ¢ in the four equations above be closed at this stage.
Closing the intervals is valid because the basis functions are continuous.

It is desired to define four blending functions, S, -, B4, based on the segments above (equations (16) to (19)) but
with an interval between zero and one inclusive. Thus we have

Bra(u) =Bosi(u+3)="(l —u)’ [o<u<1y  (20)

Bas(u) = Boso(u +2)=Ys(Bu? —6u* +4) [0<u<1] (21)
Bas(u) = Boss(u+1)="(-3u’ +3u> +3u+1) [0<u<1] (22)
Bas(u) = Bosa(u) = Vs(u’) [0<u<1] (23)

The four blending functions are shown in the diagram below.
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\ * a3(u) = Boss(u + 1) = s (3 + 3u + 3u + 1)
o u:‘1ﬁ1,3(u):Bog3’1(u+3): ]/6(1 —u)3

0 J
u=0 u=1
* Bas(u) = Bosa(u +2) =" 3u’ — 6u* + 4) /' Baz(u) = Bosa(u) ="/s ()
| 0 |
u=0 u=1 u=0 u=1
Figure 2-4

In general, the blending functions of a uniform B-spline curve of degree d are
Pia(u) =Bogilu+d—i+1) 0<u<lu€R][i=1, (d+1);i€Z] (24)
where Boyi(t) = Bou(t) [d—i+1<t<d—i+2;tER][i=1,,(d+1);i EZ]

In terms of blending functions, a uniform B-spline, S, of degree d is defined by
n—d
S = 18,00 :8,.0) = B P, + By (B +-+ B @B, D=usnp (2
i=0

Equation (25) can be written in matrix form. For a uniform third-degree B-spline, equation (25) evaluates
explicitly to

-3

3

S =8 @) S, ) =LA —u)’P, +L(Gu’ —6u + AP, +L(=3u’ + 3’ +3u+ P, + L@, <u<nf (20)

i+3

i=0

which can be written in matrix form as

-1 3 -3 1][P
i 1 -6 3 0[|P,
S=Uisu:Suw = wull el o | s 27
1 4 0P,

Equation (26) can easily be implemented in software with minimal overheads (each value of i represents one
spline segment of the uniform B-spline curve).

2.1.3 Basis vs. Blending Functions

As shown in the previous sections, the basis functions are not the same as the blending functions, even though
the blending functions are derived from the basis functions. Many publications, unfortunately, confound basis
functions and blending functions, regarding both terms as synonyms while failing to distinguish between the two
types of functions.

The basis functions are suitably named as such; they are the basis of the definition of a particular type of spline.
For example, B-splines are formally defined by their basis functions. Hermite splines are defined by their own
basis functions. The basis functions determine the shape of the B-spline curve relative to its control points.
Basis functions are less suited to be called “blending functions” because blending functions are actually
mathematical weights applied to the control points, and the basis functions interpreted as weights result in zero
weights for most of a large number of control points by definition. It is pointless having a weight which, by
definition, is zero. Basis functions require a knot set. Note that the basis functions apply to all B-splines.

The blending functions are also suitably named as such; they are actually mathematical weights applied to a
subsequence of control points that define a curve segment (each point of a curve segment is a “blend” of the
subsequence of control points). The control points that are not involved in defining a particular curve segment
are not part of the weighting, so there are no weights that are zero by definition for the blending functions.



Blending functions are not suitable to be called “basis functions” because the blending functions are derived from
the basis functions, and so are not themselves the basis for defining different types of splines. Blending
functions are not mathematically necessary for defining a spline. Blending functions do not require a knot set.
Note that the blending functions apply only to uniform B-splines.

In any case, the two types of functions must be distinguished from each other — they are not the same set of
functions and should never be referred to by the same name. In addition, basis functions are generally piecewise
functions, and blending functions are generally one-piece functions.

2.1.4 Anchored Uniform B-splines

A uniform B-spline does not pass through any of its control points. However, there are situations where the
B-spline is required to pass through the first and\or last control points (P, and P,, respectively, where the number
of control points is n + 1). Such a B-spline is called an anchored uniform B-spline because the first and\or last
knot point of the B-spline is “anchored” to the first or last control point, respectively. Typically, an anchored
uniform B-spline passes through both the first and last control points.

There are two ways to convert a non-anchored uniform B-spline to an anchored uniform B-spline. The first
method is to alter the knot set; the second method is to alter the control points.

First Method: The knot set of a d" degree B-spline with n + 1 control points is expressed as {t-4, ti-a, t2-a, ", to,
t, s tari-ds tis2-d> 5 tar1). For a umiform B-spline, the knot set will typically be (-d, 1 -d,2-d, -+, 0, 1, -,
n+1-d,n+2-d, -, n+1). For example, the knot set of a uniform 3" degree B-spline with eight control
points (n =7) is implicitly (-3, -2, -1, 0, 1,2,3,4,5, 6,7, 8). To convert a uniform B-spline to an anchored
uniform B-spline, simply replace the first d knots with zero (%), and the last d knots with knot values being the
same as the last (d + 1)" knot (t,+1-4). The new knot set will then be explicitly

(0,-50,0,sn+l-d,n+l-d,-n+1-d)
N

d times d times

For example, the knot set given in the example above would be altered to (0, 0, 0,0, 1,2, 3,4, 5,5,5,5). Note
that by altering the knot set as described in this method, the resulting B-spline is not a true uniform B-spline, and
the blending functions no longer apply throughout. However, as long as it is understood what is meant by the
term “anchored uniform B-spline” it is convenient to call it as such.

Second Method: The knot set of the uniform B-spline remains implicit. For a uniform d"™ degree B-spline, the
first and last control points are each repeated an additional d — 1 times. For example, if the control points of a
uniform 3™ degree B-spline are Py, -, P57, then the new control points will be Py, Py, Py, Py, -, Ps, P;, P7, P;. In
this case, the B-spline remains a true uniform B-spline, and the blending functions apply throughout. Note that if
this method is implemented in a computer program, then the first curve segment of the B-spline will be a single
point (Py) repeated multiple times, and similarly for the last curve segment.

Either of the two methods above can also be used to create a sharp join at a control point by repeating a knot an
additional d times or a control point an additional d — 1 times.

Note that the two methods separately applied to the same control points do not necessarily result in an identical
B-spline curve when anchoring the end points or creating a sharp join at a control point. For example, anchoring
the end points of a uniform B-spline using the first method (repeated knots) does not necessarily result in an
identical B-spline curve as when using the second method (repeated end points) on the same uniform B-spline.

It may be useful to note that anchoring the end points of a uniform 3™ degree B-spline using the second method
(repeated end points) results in a spline curve identical to an anchored Bezier spline that has continuity C® (the
end points are not repeated for the Bezier spline); using the first method (repeated knots) on the uniform B-spline
does not result in an identical spline curve. Also, an anchored uniform 3" degree B-spline with four control
points using the first anchoring method results in a 3™ degree Bezier curve (with the same four control points);
using the second anchoring method does not typically produce a Bezier curve.

2.2 Joining Separate B-splines

Separate B-splines of a given degree can be joined together to form one continuous spline of the same degree in
various ways. When a B-spline is joined to a given B-spline, some of the control points and knots of the joining
B-spline are modified in a certain way, but the given B-spline remains unmodified.



When joining B-splines, a number of control points of the given B-spline is added to the beginning or end of the
joining B-spline. The number of control points added is equal to the degree of the B-splines. The knots
corresponding to the added control points are also added to the joining B-spline. Some of the original knots of
the joining B-spline may need to be altered, resulting in the original shape of the joining B-spline curve
potentially being altered near the joined end.

There are generally three methods for joining B-splines together. (1) The end of the joining B-spline is
connected to the beginning of the given B-spline; (2) the beginning of the joining B-spline is connected to the
end of the given B-spline; (3) the joining B-spline is connected to two given B-splines. The three methods are
described in the following sections (d is the degree of the B-splines).

2.2.1 Joining the End of a B-spline to Another

This method extends the end of a joining B-spline, Qo, -, Q., to connect to the first knot point of a given B-
spline, Py, ---, P,. The control points of the joining B-spline are modified to Qo, ***, Qu, Po, -, P4-1. The given
B-spline is unmodified.

Given B-spline: Py, -, P, Knot set: {pg, **, prras1)
B-spline to be joined: Qo, -, Qu Knot set: (go, ", Guras1)
Joined B-spline: Qo, 5 Qu, Po, -, Pt Knot set: {go, **, qm+1, So, ", $24.1) Where

Si=pis1 T (Gmz —p1) [i=0,,2d-1]

2.2.2 Joining the Beginning of a B-spline to Another

This method extends the beginning of a joining B-spline, Qo, -**, Q., to connect to the last knot point of a given
B-spline, Py, -, P,. The control points of the joining B-spline are modified to P,_41, -, Py, Qo, -, Qu. The
given B-spline is unmodified.

Given B-spline: Py, -, P, Knot set: {pg, **, puras1)
B-spline to be joined: Qq, -, Q. Knot set: {go, ***, Gm+a+1)
Joined B-spline: P, a1, o, Pu, Qo, o, Qu Knot set: (s, *-, 8241, a, ", Gmrar1) Where

Si = Disn-ar1 t (Qa-1 — Pura) [i=0, =, 2d - 1]

2.2.3 Joining Two B-splines by Another

In this method, a new B-spline, P,_41, -, Py, *, Qo, -, Qu-1, is created which connects the last knot point of a
given B-spline, Py, -, P,, to the first knot point of another given B-spline, Qo, -, Q.. * represents possibly new
arbitrary control points, Ry, *--, Ri3 [d > 3]. The two given B-splines are unmodified.

Given B-spline: Py, -, P, Knot set: (pg, ***, paras1)
Given B-spline:  Qo, -, Q. Knot set: (go, ", Gura+1)
Joining B-spline: P, 41, =, Pu, *, Qo, -, Qu-1 Knot set: (p, 4+1, ***, Puta> S0, ***, S2a-1)) Where
where * is Ry, =, Rg3ifd >3 Si=qi2+ (Pura—q1) [i=0,,2(d - 1)]
If the degree, d, of the B-splines is greater than or equal to three then new arbitrary control points, Ry, -, Ras,

need to be inserted at * above, otherwise no arbitrary control points are inserted. Also, if the B-splines are
uniform, and have implicit knot sets, then * is ignored and no arbitrary control points are inserted.

2.2.4 Creating a Closed B-spline

An open B-spline (a B-spline forming an open curve) can be closed (the ends of the B-spline are joined, thereby
forming a closed curve) by letting m be identical to n, and letting Q; be identical to P; [i = 0, -, n] (thus only one
B-spline is initially involved) in the three methods presented in the sections above.

2.2.5 Merging B-splines Together

Two or more B-splines can be merged into a given B-spline by using any of the three methods presented in the
sections above. The two or more B-splines to merge would be the joining B-splines in the first two methods.
For the third method, new joining B-splines need to be created. Any one of the joining B-splines can be joined
to one end of the given B-spline, or to the middle (beginning of any intermediate curve segment) of the given B-
spline. After joining, the original B-spline will branch into two or more B-splines.



To join a B-spline to the middle of a given B-spline, the control points and knots of the given B-spline not
involved in the join are ignored. For example, if the given B-spline has control points Py, -+, Py, -, P,, with
knot set {po, **, P, """, Pnra+1), and a joining B-spline is to be joined to the curve segment corresponding to the
control points Py, -+, Pria, then the control points Po, -+, Pi1, and knots {po, **, pi—1) can be ignored, and the
control points Py, -+, P,, and knots (p, -, pa+ar1) of the given B-spline can be treated as control points Py, -+, P,
and knots (po, -, pnra-i+1) in the methods presented in the sections above.

2.2.6 Joining Uniform B-splines

Uniform B-splines with implicit knot sets can be joined by any of the methods presented in the sections above by
ignoring the knot sets presented in those methods. For example, to join the uniform B-spline, O, with control
points Q,, **+, Q, to the given uniform B-spline defined by the control points Py, -+, P,, simply modify Q to

Qo, *, Qu, Py, -+, Pooy. To close a uniform B-spline defined by control points Py, -+, P,, modify the control
points to Po, =+, Py, Po, =, Py-y.

2.3 Separating B-splines

A single B-spline is easily separated into two independent B-splines, one with control points Py, -, P, and the
other with control points Q,, -, Q.. The method is as follows.

Given B-spline: Py, -, Pu, Qo, -+, Qu Knot set: {po, ***, pu, Go, ***5 Gmrar1)
Separate B-spline 1: Py, -+, P, Knot set: {po, ***, pu, qo, ***» Ga)
Separate B-spline 2: Qo, -, Qu Knot set: (g, ***, Gmrar1)

3. B-splines in Terms of Bezier Control Points

The control points and knot set of a B-spline can be converted to the control points of a Bezier spline resulting in
exactly the same B-spline curve. Such a conversion is useful for implementing B-splines in terms of Bezier
control points for systems that implement only Bezier curves at the pixel level. In this document, a “Bezier
curve” is a one-piece curve, not a piecewise curve; a “Bezier spline” consists of joined Bezier curves.

A poly-bezier is a sequence of points, where each adjacent group of points defines a Bezier curve, and only one
point exists for the common end points of each adjacent pair of Bezier curves. For example, the points Py, P,
P,, P;, P, Ps, Py define a 3" degree poly-bezier consisting of two Bezier curves, the first of which is defined by
the points Py, Py, P>, P3, and the second is defined by the points Ps, P4, Ps, Ps. Notice that the common end
point, Ps, of the pair of Bezier curves is present only once in the sequence of the poly-bezier points. The poly-
bezier points are the control points of a general Bezier spline.

3.1 Third Degree Uniform B-spline to Bezier

The following paragraphs show how to convert the control points of a uniform 3™ degree B-spline to the points
of a 3 degree poly-bezier. To develop the method, the matrix forms of a Bezier curve and a spline segment are
used. The matrix form of one spline segment of a uniform 3™ degree B-spline (see equation (27)) is

S(t) =T()N;P[0<t<1] (28)

which is expanded to

1 3 3 1[p,

S(t)=[t3 2t 1] 3763 0ffR [0<r<1] (29)
3 0 3 0|lp
1 4 1 0l|lP

Also, a 3" degree Bezier curve can be represented in matrix form as
B(t) = T(O)M:B [0<:<1] (30)

which is expanded to



o

B(r):[t3 2ot 1]_ [0<e<1] (31)
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Equation (28) can be written as
S(¢) = T(H)M:M; 'NsP = T()Ms(M5'N;P) [0 < ¢ < 1] (32)

where M5! is the inverse matrix of M;, which is

(=)
(=]

M;' = (33)
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If we let
B =M;"'N;P (34)

then equation (32) can be written as
S()=T)M:B [0<:<1] (35)

which is in the same form as equation (30).

Thus, equation (34) specifies the formula to convert the control points (P) of a uniform B-spline to the points (B)
of a poly-bezier for a 3rd degree B-spline curve.

Noting that

M;'N, = (36)

|~
[ R e
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To convert a uniform 3" degree B-spline with n + 1 control points (P,) to a 3™ degree poly-bezier with 3n — 5
points (B;), the following equation is used.

B, a0l e[+ 0]l p
B.. 0 (4 2 0 P. 0|2 1L 0 P.
| _ 1 . 55 L fi=0, =31 (37)
B3i+2 6 0 2 4 0 Pi+2 O % % 0 Pi+2
B 0o |1 4 1][||P 0 |+ 2 L|||p

3i+3 +3

In the equation above, the outer matrix is used if i = 0; the inner matrix is used if i > 0.

For an example of using equation (37), the poly-bezier points (Bo, -, Bs) calculated from five uniform B-spline
control points (Po, -, P,4) for a B-spline of third degree (where n = 4) are

Bo = /Py + Py + P,
B, = %P, + P,
B, = 5P, + %P,
B; = VP, + %P, + YP;
B, = %P, + Y4P;
B;s = V4P, + %P,

B() = 1/()l:'z + 2/3P3 + 1/6P4



3.2 General Uniform B-spline to Bezier
In general, for a uniform B-spline of degree d, equation (34) would be

B=M;'N,P (38)

which expands to

By [[=M/N, || Py || i=0.(n-d)] (39)

B

di+d

The outer matrix is used if i = 0; the inner matrix is used if i > 0. M, "' is the inverse of the matrix of a d™ degree
Bezier curve (see Matrix Form of a Bezier Curve under B.1 Bezier Curves of Appendix A: Bezier Splines to
calculate M,). The inner matrix of M, ' begins at the second row and second column. N, is the matrix form of
one spline segment of a uniform B-spline of degree d.

3.3 Non-uniform B-spline to Bezier

Converting non-uniform B-spline control points to Bezier control points is much more difficult than the method
presented above for uniform B-splines. The method of inserting duplicate control points (via “Boehm’s knot
insertion algorithm) to obtain Bezier control points seems to fail in practice.

To convert a 3" degree B-spline (not necessarily uniform) with n + 1 control points (P;) and knots (to, -, ty4) to
a 3" degree poly-bezier with 3n — 5 points (B;), the following equations can be used.

A A A A
B3i =22 B3i+1 +[1- =2 - Pi+1 +[1- = Pi (40a)
A4,2 A4,2 A4,1 A4,1

A A
By, = iPurz +[1-—=2 P, (40b)
A A

i
5,2 5.2

>

>

A
By, = A;MP- + [1 -

i+2
5,2

A A A A
B = — | P+ |1- = P, |+|1- = B, (40d)
Ass | Ags Ags Ass

fori=0, -, (n—3), where A, =dr tira — tivp. Also

]P (400

5.2

, Aa’b is deemed to be zero if A., = 0. Equation (40a) is used
c,d

only when i = 0. Equations (40) are derived from the so-called “polar form” of the control points of a 3™ degree

B-spline. Notice that for a uniform 3™ degree B-spline, equations (40) are identical to the expanded equation

(37) (Aup =dar a — b for a uniform B-spline).

To convert the control points of any degree B-spline to Bezier control points, the methods involving the polar
form of control points, introduced by Dr. Lyle Ramshaw, can be used (presented in the next section).

3.4 Polar Forms

The following is only a summary of the concept of polar forms (introduced by Dr. Lyle Ramshaw) of control
points for B-splines and Bezier splines. Other publications on polar forms need to be referred to for more
information. Using polar forms involves a heuristic method of converting a given sequence of B-spline control
points to another sequence of points, given a (modified) knot set. Polar forms are typically used to convert the
control points of any degree B-spline to Bezier control points. The term “polar forms” is unfortunate, since it
has nothing to do with polar coordinates or complex numbers.



With the polar forms system, each control point of a B-spline or Bezier spline of degree d is associated with a
d-tuple of knots called a polar value. If the knot set of a B-spline is represented by (¢, to, =", tu+a-1, taray (Where
t; <ty [i=0,,n+d-2]), then the following four rules apply. In the polar forms system, knots ¢z, and #,., are
ignored because they do not partake in the resulting B-spline curve, therefore, a knot set will be understood to be
represented as (Zy, ‘', fs1a-1) in this section (such a knot set will be called a trimmed knot set in this document).

The Four Rules of Polar Forms

1. The d + 1 control points (B, [i =0, -, d]) of a degree d Bezier curve between the interval [#, t:1] of the
trimmed knot set of a given B-spline are associated with polar values, (...),, as follows.

BiE(uly T ud)P [i:07 % d]
where
u. = tk [jéd—i] =1, d
|4, [otherwise]

The corresponding pair B; and (u,, ‘-, us), can be denoted by Bi:(ui, -, us), (the subscript “p” outside the
parentheses means “polar value™).

For example, the four control point\polar value pairs of a 3™ degree Bezier curve between the interval
[3.5, 4.2] of a B-spline trimmed knot set are denoted by:
Bo:(3.5, 3.5, 3.5),, Bi:(3.5, 3.5, 4.2),, B2:(3.5, 4.2, 4.2),, B5:(4.2, 4.2, 4.2),.

2. The n + 1 control points (P;) of a degree d B-spline with trimmed knot set (to, ***, t.+a-1) are associated with
polar values as follows.

P.=(t, -, tiva1)p [i=0, -, n]

For example, the control point\polar value pairs of a 3™ degree B-spline with trimmed knot set
(2,2.4,3,4,5.5,6.1) are: Po:(2, 2.4, 3),, P1:(2.4, 3, 4),, P2:(3, 4, 5.5),, P5:(4, 5.5, 6.1),.

3. The elements of a polar value are symmetric
(permi(uo, =, ua-1))p = (PErM2 (o, ***, Ua-1))p
where perm(uo, -, uqs1) is any arbitrary permutation of uo, -, uai.
For example (2,2.4,3,7),=(12.4,3,7,2),=(7, 2.4, 3, 2),.

4. The following equation is used to compute a new polar value (uo, -, tq-2, 1), for any desired value of u
from two existing polar values, (uo, =, Ua—, Up), and (uo, =, Ua2, Ua)p, and their respective associated points
P; and P;. The new polar value represents a new point P.

P:(uo, -, ta, ), = aPi:(uo, =, a2, tp)p + (1 — a)P;:(tho, **, Ua2, Ua)p
where
u—u
< [ub - uu * 0]
Z'lb - ua
o =
0 [otherwise]

Note that d — 1 elements of the three polar values must be identical, but the d elements can be in any
order.

For example, given Py:(2, 2.4, 3), and P,:(2.4, 3, 4),, along with a desired 3.7, then a new point, P, is
calculated by P:(3.7, 2.4, 3), = aP1:(2.4, 3, 4), + (1 — a)P:(2, 2.4, 3), where a = (3.7 - 2) / (4 — 2) = 0.85.
In other words, the new point, P, associated with the polar value (3.7, 2.4, 3),, is defined by P = 0.85P, +
0.15P,. The new point P is at a distance 85% along the line segment from P, to P;. Notice that the two
elements, 2.4 and 3, are common to the three polar values.

Among other purposes, polar forms can be used to convert B-spline control points to Bezier control points of the
same degree spline. One spline segment is converted at a time. The following example shows how to determine
the Bezier control points, By, -+, B3, of one spline segment from the control points of a B-spline using the four
rules stated above.

Example

Degree of B-spline and Bezier curve: 3



Given control points of B-spline: Py, -, P

Given trimmed knot set: {0, 1.5,4,5,5.5,6,7,7.4, 12)

Spline segment intervals: [4, 5), [5, 5.5), [5.5, 6), [6, 7)

Calculated polar values of B-spline: Py:(0, 1.5, 4),, P1:(1.5, 4, 5),, P2:(4, 5, 5.5),, P3:(5, 5.5, 6),, P4:(5.5, 6, 7.0),,
Ps:(6, 7, 7.4),, Ps:(7, 7.4, 12),

Desired spline segment interval for calculating Bezier control points: [5, 5.5]

Calculated polar values of Bezier curve of desired spline segment interval: Bo:(5, 5, 5),, B:1:(5, 5, 5.5),,
B.,:(5, 5.5, 5.5),, B3:(5.5, 5.5, 5.5),

Calculation of B;: B;:(5, 5, 5.5), = 0.5P5:(5, 5.5, 6), + (1 — 0.5)P,:(4, 5, 5.5),

Calculation of B,: B»:(5, 5.5, 5.5), = 0.75P5:(5, 5.5, 6), + (1 — 0.75)P,:(4, 5, 5.5),

Calculation of temporary point Qo: Qo:(4, 5, 5) = 0.875P,:(4, 5, 5.5), + (1 — 0.875)P,:(1.5, 4, 5),

Calculation of By: Bo:(5, 5, 5), = %:Bi:(5, 5, 5.5), + (1 = %4)Qo:(4, 5, 5),

Calculation of temporary point Q;: Q;:(5.5, 5.5, 6), = 0.25P4:(5.5, 6, 7), + (1 — 0.25)P5:(5, 5.5, 6),

Calculation of Bs: B3:(5.5, 5.5, 5.5), = 0.5Q::(5.5, 5.5, 6), + (1 — 0.5)B2:(5, 5.5, 5.5),

Calculated Bo: By = %B; + /43(0.875P, + 0.125)P,

Calculated B;: B, = 0.5P; + 0.5P,

Calculated B,: B, = 0.75P; + 0.25P,

Calculated Bs: B; = 0.125P4 + 0.375P5 + 0.5B;

A similar procedure to the above can be used to obtain the four Bezier control points for each of the other spline
segment intervals. As the degree of the B-spline increases, the calculations tend to be more complicated with
more temporary point calculations.

The calculations for the Bezier control points follow the same pattern for each spline segment. Therefore, to
develop a general formula for the Bezier control points for a particular degree B-spline, variable symbols, ¢;, can
be used for the trimmed knot set and polar values in the calculations involving one spline segment — the first
spline segment interval is [t.1, t;). Equations (40) were developed in the said manner.

4. Emulating Curves Using B-splines

In software, a curve is typically emulated by a poly-line (joined straight line segments). A more accurate and
smoother alternative can be achieved by using a cubic (3™ degree) B-spline. This method requires a sequence of
sample points of the curve desired to be emulated, and results in a sequence of control points of a cubic B-spline
(which can then be easily converted to the control points of a cubic Bezier spline (poly-bezier) if required).

4.1 Near Interpolation

The ideal way to use a cubic B-spline to emulate a curve is to use the sample points of the curve as the control
points of an interpolated cubic B-spline. But, the calculations for emulating a given curve using an interpolated
cubic B-spline on the sample points are an unacceptable overhead compared with emulating the same curve using
a poly-line on the same sample points. However, there is a simple method to accurately approximate an
interpolated cubic B-spline through given sample points of a curve, requiring far less overhead than a true
interpolated cubic B-spline through the same sample points, but only slightly more overhead than a poly-line
through those points. The method can be referred to as “near interpolation” in this document. (Recall that for
an interpolated B-spline, the knot points are identical to the control points.)

The method of near interpolation is described as follows. The idea is to calculate the control points of a
uniform B-spline approximation from a sequence of sample points of a given curve, such that the calculated
uniform B-spline curve closely approximates a hypothetical uniform cubic B-spline curve that interpolates those
sample points. For example, if the sample points are Sy, -, S,, then this method calculates control points Py, -,
P,, which are the control points of a uniform cubic B-spline approximation (ie: the B-spline does not necessarily
go through the sample points) such that the said B-spline very closely approximates a hypothetical true
interpolated uniform cubic B-spline curve through the same sample points with far less overheads than are
required for calculating the true interpolated B-spline. The calculated control points P, ---, P, are then used in a
computer program that would render the cubic B-spline approximation at the pixel level, thus producing a
smooth curve approximation of the sample points at any zoom level (using a poly-line, instead, to interpolate the
sample points can result in visible joined straight line segments at high zoom levels). If the computer program
renders only Bezier splines (poly-beziers) at the pixel level, then the points Py, -, P, can be converted to Bezier
points via equation (37).



The equation below calculates the control points (Py, -+, P,) of a uniform 3" degree B-spline curve from sample
points (So, -, S,). The B-spline curve is a near interpolation of the sample points.

kS, + %(SH +S,,) [S,#S,, and S, #8,,]

i

P = [i=1, (n-1)] (41)

i

S. [otherwise]

i

Po=Soand P,=S,

where k determines the accuracy of the near interpolated B-spline with respect to a hypothetical true interpolated
uniform B-spline through the sample points. A good value of k£ is 1.353 (obtained by trial-and-error). Note that,
typically, the calculated B-spline is modified to be anchored at P, and P, (the first three points will be Py, and
the last three points will be P,).

Geometric Interpretation
Equation (41) is interpreted, geometrically, as shown in Figure 4-1 below.

P, =kS;+ (1 - M I;;ﬂ
P;
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Si1
Figure 4-1

P, [i =0, -, n] are the control points of a (non-anchored) uniform 3™ degree B-spline curve passing near the sample
points S; [i =0, -, n], thereby making the B-spline curve a near interpolation. The distance between P; and M is &
times the distance between S; and M. M is the midpoint between S;_; and S;;;. The value of £ is typically 1.353.

Note that Py =S, and P, = S,.

The illustrations below show a comparison of a poly-line (green) and near interpolated B-spline (black) with a
given B-spline (red). The centre of the circles represents the sample points of the given B-spline. The poly-line
is typically used in graphics packages to emulate smooth curves. The near interpolated B-spline is a much more
accurate emulation of smooth curves than the poly-line for the same sample points, but with only slightly more
calculation overhead than for the poly-line. The near interpolated B-spline tends to have the most inaccuracy
between the first two and last two sample points. (Note that, in the illustrations, the given B-spline (red) was
emulated by a high-density poly-line, rather than a true interpolated B-spline.)

The illustration below, Figure 4-2, shows a given cubic B-spline (red) having three spline segments which is
emulated by a poly-line (green) and a near interpolated B-spline (black). The centre of the circles (which are
shown only for illustration) represent the sample points of the given B-spline (red) used for both emulations.
The comparison is between the black and green curves relative to the red curve. The illustration shows how
much more accurate the black curve (near interpolated B-spline) is compared to the green curve (a poly-line as
typically used for emulating curves). In fact, the black curve is almost identical to the red curve, except at the
ends.



4 Emulating Curves Using B-splines

Figure 4-2

Figure 4-3 is a close-up of the top-right section of Figure 4-2, and shows that the near interpolated B-spline
(black) does not necessarily pass through the sample points, but is close enough.

Figure 4-3

16 4.1 Near Interpolation 16



Figure 4-4 contains the same given B-spline as in Figure 4-2, but with fewer sample points. Even with such a
low number of sample points, the near interpolated B-spline (black) is a much more accurate approximation of
the red curve than is the poly-line (green), except between the end two sample points at each end of the B-spline.
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Figure 4-4

A near interpolated B-spline can be used not only for emulating any degree B-spline (or other splines) but also
for emulating any curve that has continuity C". The illustration below, Figure 4-5, shows a portion of a given
curve (red) defined by y = Vioxsin(¥ssx*) emulated by a poly-line (green) and a near interpolated B-spline
(black). Notice that, although the near interpolated B-spline is not extremely accurate at the left end of the
figure, it nevertheless has a shape that resembles the given curve, whereas the poly-line has a very poor
resemblance of the given curve.
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Figure 4-5

The greater the number of sample points the more closer a near interpolated B-spline will be to the true
interpolated B-spline. However, if there are too many sample points, not only will there be more calculations to
perform by the implementing software, but also the drawing canvas will need to be of higher density, otherwise
the spline will appear rough.

A better approximation of a near interpolated B-spline to a true interpolated B-spline can be obtained if S; is
closer to M in Figure 4-1, and the sample points are more evenly distributed. Consequently, a near interpolated
B-spline is not suitable for use with arbitrary control points to approximate a true interpolated B-spline through



those points. However, equation (41) can be used in its own right with the control points of any spline to flatten
that spline by assigning a small positive value to & in the equation.

5. Misconceptions about B-splines

Unfortunately, there are a few common misconceptions about the comparison of B-splines with Bezier splines
presented in some publications. Most of the misconceptions arise because a Bezier spline is inappropriately
regarded as a one-piece curve of a varying degree that depends on the number of control points rather than a
piecewise curve with each curve segment of the same degree (see Appendix A: The Proper Definition of a
Mathematical Spline).

5.1 List of Misconceptions
The following is a list of some misconceptions about B-splines.

1. Claim: B-splines are more versatile than Bezier splines.

B-splines and Bezier splines are inter-convertible — any B-spline curve can be converted to a Bezier
spline (and vice versa), as described in chapter 3, B-splines in Terms of Bezier Control Points.
Therefore, B-splines are not more versatile than Bezier splines. However, direct Bezier splines are
arguably more versatile than B-splines in practice because Bezier splines can be directly shaped to any
polynomial spline via their control points without the need of additional information such as a knot set.

2. Claim: B-splines have local control and Bezier curves have global control.

The justification offered is that modifying one control point of a B-spline affects at most d + 1 adjoining
spline segments (where d is the degree of the B-spline), but that for a Bezier curve, a modified control
point affects the whole “spline”. The error made in the claim is to ignorantly compare a B-spline (which is
a piecewise curve) of a particular degree with a one-piece Bezier curve of a degree that varies according to
the number of control points. Comparing a B-spline (piecewise polynomial) with a Bezier curve (one-
piece polynomial) is not a meaningful comparison; the comparison ought to be between a B-spline and a
Bezier spline. A Bezier spline is actual a piecewise polynomial of a particular degree, not a one-piece
polynomial with a degree depending on the number of control points.

It turns out, in fact, that in general, direct Bezier splines have more local control than do B-splines. This
is so because a modification of a Bezier spline control point affects at most only two adjoining polynomial
segments for any degree Bezier spline.

3. Claim: B-splines are more general than Bezier splines.

Such a claim needs to be qualified. The test for generality is that if 4 is more general than B, then there
exist instances of A that are not instances of B, and all instances of B are also instances of 4. However, all
instances of B-splines are also instances of Bezier splines (since both B-splines and Bezier splines are
piecewise polynomials and are inter-convertible), thus the test for generality fails. It could be said,
however, that B-splines are more generic (not “general”) with respect to their degree than are Bezier
splines. The main reason for that is that a Bezier spline may pass through one control point for a
particular degree, but not pass through that same control point for a different degree (for the same
sequence of control points). Consequently, the shape of the Bezier spline can be drastically different from
one degree to another (in fact the spline curve can become discontinuous from one degree to another with
the same control points). With B-splines, however, the shape of the spline is only slightly different from
one degree to another, but always remains a B-spline with the same control points.

It could also be said that B-splines are more general than Bezier splines with respect to the same sequence
of control points and degree, but not more general with respect to different control points and the same
degree.

4. Claim: B-splines are composed of joined Bezier curves.

B-splines, Bezier splines, and Bezier curves are not special types of curves — they are all polynomial
curves. Each of the three terms signifies a particular relation between a sequence of control points and the
shape of the corresponding polynomial curve. So, to say that a B-spline is “composed” of joined Bezier
curves is to say that a certain sequence of control points (the B-spline control points) determining a
sequence of certain joined polynomials can be expressed in terms of another certain sequence of control
points (hypothetical Bezier control points) determining the same sequence of polynomials. The problem is
with the word “composed” which does not seem appropriate. The claim should be modified to: B-splines
can be converted to joined Bezier curves. Also, given that joined Bezier curves constitute a Bezier spline,
the claim is equivalent to: “B-splines are composed of Bezier splines” — which is not particularly
meaningful. The equivalent of the modified claim would be: “B-splines can be converted to Bezier
splines” — which is both meaningful and correct.



Appendix A: The Proper Definition of a Mathematical Spline

Most publications verbal describe a mathematical spline as a “continuous piecewise polynomial curve”, defined
by

Su® =Y @ P [ER (Al
i=0

where P; [i =0, -, n] are the control points of the spline, and d is the degree of the piecewise polynomials involved
in the functions @, [i =0, -+, n]. However, equation (A1) is not consistent with the said verbal definition because
the equation allows one-piece polynomial functions (for example, when d = n) to form a spline for a varying
number of control points. A one-piece polynomial is not suitable for a spline that may have a varying number of
control points; the implication is that such a polynomial would need to be of degree (say) 10000 for 10001
control points, which is impractical to implement, and the result may not look anything like a spline (for
example the resulting curve may oscillate wildly in some places). The whole point of a spline is that its nature
remains the same for any number of control points (above the minimum required number), rather than having
different degree one-piece polynomials for a different number of control points.

The following ought to be the proper definition of a general mathematical spline for consistency with the verbal
definition of a parametric polynomial spline (which is verbally defined to be piecewise). The equation below
defines a family of spline curves of the same degree, d. There is one piecewise spline curve for each n.

Sy =@, ()P, [0Sttt ERIEZ n=d d+kd+2k5k€Z]  (A2)
i=0

In the definition above, the value of d is not determined by the value of n. That rules out using one-piece
polynomials as splines where d is determined by the value of n (usually d = n). m is the number of polynomial
segments of degree d. k is a particular value depending on the type of spline (eg: for a direct Bezier spline,

k = d; for a B-spline, £k = 1). Note that equation (A2) rules out having a one-piece Bezier curve as a Bezier
spline where the degree of the curve depends on the value of n.

When comparing splines, it is nonsensical to compare splines of different degrees as is done in most publications
when a B-spline of a particular degree is compared with one-piece Bezier curves of varying degrees as though
each were a Bezier spline, with the false claim that B-splines have more local control than Bezier “splines”.

Appendix B: Bezier Splines

Bezier splines are suitable for implementing geometric figures because they provide for precise control of the
shape of the figures. Uniform B-splines are suitable for curve fitting with high order continuity.

Unfortunately, in the literature about Beziers, there is confusion between Bezier basis functions and blending
functions, and also between Bezier splines and curves. This appendix includes recommendations to sort out the
confusion.

B.1 Bezier Curves

In general, a Bezier curve refers to a one-piece polynomial function determined by a sequence of points called
control points. For a degree d Bezier curve, there are d + 1 control points, Py, -, P,. The curve passes through
the two end control points (P, and P,) but not through the inner control points (P, ---, P.1). The polynomial
function of a Bezier curve can be defined in a number of equivalent ways as follows.

Standard form of Bezier Curve

The standard form of a Bezier curve is based on the Bernstein polynomials.

d d! . o
B(t :E—t’l_; p [0=st<1] (B1)
© = i'(d - Q) ( ) !

where d is the degree of the desired polynomial function.

Polynomial form of Bezier Curve
The polynomial form of a Bezier curve is based on a polynomial function (aot’ + a\t*' + - + a,.1t + a,), and is



_ d d! - (_I)Hk k [0<t<1] (Bz)
B() ;((d—k)!gi!(k—i)!l)"tj t

where d is the degree of the desired polynomial function.

Matrix Form of a Bezier Curve

The matrix form of a Bezier curve encapsulates both the standard and polynomial forms. An element, m, ., of a
Bezier matrix M, of degree d, where r is the " row, and c is the ¢™ column, and m,, is the top-left element, is
defined by

_ c+d—-r |
_EDT g
_rdd—r—-c) [re €N;r=0, dc=0,,d] (B3)

) 0 [otherwise]
A d™ degree Bezier curve can be represented in matrix form as
B(¢) = T{(t)M,P [0<t<1] (B4)
where
T, t)=[t" " - t 1]

and

Note that both the rows of M, and the columns of T,(¢) can be reversed, resulting in

(_1)C+Vd!
m = Jd=ntd(r-o) [r.c€N;r=0,.dc=0-d  (B5)

0 [otherwise]

and
T(H)=1[1 ¢t -~ "' ']

The inverse matrix, M, ', of M, can be used to convert the control points of a uniform B-spline of degree d to
Bezier control points.

B.2 Bezier Basis Functions

The proper definition of a mathematical spline was defined in Appendix A: The Proper Definition of a
Mathematical Spline as

Sy =D @, ()P, [0Sttt ERIEZ n=d d+kd+2k5k€Z]  (A2)
i=0

where @;, [i =0, -, n] are called the basis functions. In keeping with that definition, the basis functions, B;4, of a
Bezier spline of degree d ought to be defined by

Bz, ,(¢) [i=0]
(B6)

Bi,d(t) = .
sz’d[t - LO;—DJ] wherek =1+mod, (i —1) [1<i<n]

for i =0, ---, n, where the value of mod,(x) is equal to a such that x = a (modulo d), and where



d' k d-k
mu(l—u) [0<k<d] [0<u<]]
Bz, ,(u) = (2 —u)" [k = d] MN<u<2] (B7)
0 [otherwise]
fork=0, -, d.

A general Bezier spline is therefore defined by

S0 = zBi,d(t)P[ [0<t<%][d>1;d € Z] [n=d,2d, 3d, ] (BY)
i=0

The knot set is implicitly fixed as (0, 1, 2, -+, /). The knot points are Py, Py, P2y, -, P

B.3 Bezier Blending Functions

As for B-splines, the basis functions of a Bezier spline turn out to be zero for most of a large number of control
points. Each point of a Bezier spline segment is a weighted combination (or “blending”) of d + 1 consecutive
control points; the weighting is defined by d + 1 functions, Bez 4, -, Bez, 4, called blending functions.

d!

— WA —w)?t [0su<1][k=0,-,d  (B9)
K\(d — k)!

Bez, ,(u) =

where d is the degree of the Bezier spline. Notice that the blending functions are the coefficients of the control
points in equation (B1).

B.4 Types of Bezier Splines

Bezier curves can be joined in many different ways to form Bezier splines. Unlike B-splines, Bezier splines do
not require a knot set. Instead, joining and other conditions may need to be specified to define particular types
of Bezier splines. With Bezier splines, the Bezier control points may not all be identical to the given control
points of the spline. Therefore, some Bezier control points may need to be calculated from the given control
points. In this document, four categories of Bezier splines are defined.

Direct Bezier Spline

If the given spline control points are identical to the Bezier control points, and vice versa, then the spline is
called a “direct Bezier spline”. The control points may be restricted by joining conditions. A direct Bezier
spline is the most versatile Bezier spline. A poly-bezier is a direct Bezier spline.

Controlled Bezier Spline

If all the given spline control points, with the exception of the two outer end control points of the given spline,
are identical only to the inner control points of all the Bezier curve segments of the Bezier spline then the spline
is called a “controlled Bezier spline”. The outer control points of the Bezier curve segments are calculated from
the given control points, except for the two outer end control points of the whole spline, which are identical to
the two outer end control points of the given spline. The given control points may be restricted by joining
conditions.

Interpolated Bezier Spline

If all the given spline control points are identical only to the outer control points of all the Bezier curve
segments of the Bezier spline, then the spline is called an “interpolated Bezier spline”. The inner control points
of the Bezier curve segments are calculated from the given control points.

Indirect Bezier Spline

If none of the given spline control points are identical to any of the Bezier control points (except possibly the
end control points of the spline), and vice versa, then the spline is called an “indirect Bezier spline”. All of the
control points of the Bezier curve segments are calculated from the given control points.



B.4.1 General Bezier Spline

A general Bezier spline is a direct Bezier spline, and is defined by equation (B1). There are no additional
joining conditions other than those required for the spline to be continuous. Any polynomial spline can be
represented as a general Bezier spline.

A general Bezier spline, including its control points (P, -, P,), is identical to a B-spline having the following
knot set with that same sequence of control points.

T N TRy Y SO S S k)
< 0° 9 0> 12 > 12 > '7’*]’ > ﬁ—l’ %7 > % [kx [ R; ki<k:Al; i= 0, ST ”/d* 1]
. M —_
d+1 times d times d times d+1 times

where d is the degree of the general Bezier spline, and &; [i = 0, -+, %] are arbitrary numbers as specified. In that
sense, a general Bezier spline of a particular degree and sequence of control points can be said to be a special
case of a B-spline of the same degree and sequence of control points (with the specified knot set).

B.4.2 Standard Cubic Bezier Spline

A default standard cubic Bezier spline is a controlled Bezier spline. The inner Bezier control points of all the
Bezier curve segment are identical to the given control points, and vice versa (except for the two end control
points of the whole spline). A non-default standard cubic Bezier spline is an indirect Bezier spline. In both
cases, the common outer Bezier control points of each adjacent Bezier curve segment are midway between the
two neighbouring inner control points. The two end Bezier control points of the whole spline are given.

The following is a mapping from a sequence of n + 1 given control points, P; [i =0, -, n], to a sequence of Bezier
control points, B; [i =0, -, "] for a standard cubic Bezier spline. n=2j+1[j=1,2,...].
B, + &+ 0 0 P,
B.. £ 2=k
w || |7 3 0 0{1p,, [i=0, 23] (B10)
B3i+2 O O % % P2[+2
B3i+3 O 0 % % P2i+3

where k is a sharpness value (a real number), 0 < k£ < 1; the default is k = 0. k=1 results in a poly-line. For i =
0, the outer matrix is used; for i > 0, the inner matrix is used. If desired, adjustments can be made to anchor the
end control pOil’ltS, as follows: B() = P(), Bl = (1 — k)P] + kP(), B(3n75)/2 = (1 — k)P,,,l + kP,,, B3(,,,|)/2 = P,,.

A standard cubic Bezier spline is ideal for creating geometric figures with continuity C".

B.4.3 Cubic Bezier-B Spline

A cubic Bezier-B spline is an indirect Bezier spline, and is identical to an anchored uniform cubic B-spline (and
therefore has continuity C*). The mapping from a sequence of n + 1 given control points, P; [i =0, -, ], to a
sequence of Bezier control points, B; [i =0, -, 3n - 6] for a cubic Bezier-B spline is defined by equation (37),
reproduced below.

B, v 5% 0 || P
B, 2 1 P,
3i+1 _ 0 3 3 0 i+1 [i _ 0’ . (n _ 3)] (37)
B3i+2 0 % % O Pi+2
B3i+3 0 % % % Pi+3

In the equation above, the outer matrix is used if i = 0; the inner matrix is used if i > 0. The cubic Bezier-B
spline is anchored to P, and P, as follows:

The following three control points are added before the first control point By: Py, 3P + /4Py, /5Py + 5P).
The following three control points are added after the last control point Bs, ¢: 3P, 1 + /4P, VsP, 1 + %P, P,.

The control points of a cubic Bezier-B spline would therefore be: Py, %3Py + 4Py, 5Py + %Py, Bo, =, Ba, s, 7P,
+ 1/3Pn9 1/3Pn—1 + 2/3Pn, Pn-



Appendix C: B-spline Algorithms
This appendix presents some B-spline pseudo-code algorithms that can be converted to a programming language.

The algorithms are presented as an adaptation from mathematical notation, and can be used to implement various
B-spline aspects.

The algorithms are designed for clarity rather than efficiency. Note that, in the algorithms, the symbols ‘x +:=y’
means appending the single element y to array x; ‘x ++ y’ means appending a copy of the elements of array y to a
copy of the elements of array x to form a new array. Arrays and sequences are assumed to be one-based not
zero-based.

C.1 Direct B-spline Function

This algorithm is a direct implementation of the B-spline function defined by equation (3 ") for any B-spline.
This algorithm is presented for demonstration purposes only; the algorithm is too slow to be used in practice.
For an efficient implementation, see paragraph C.2 deBoor Algorithm below. Note that the function is defined
recursively.

Given:

s € R (desired density value, eg: 30); d € N (desired degree of polynomial beginning with 0); p =4 (P1, -, P,)
(control points); k =4 {t1, ", turar1) (knot set).

Return:

r =q4r sequence of points on the B-spline curve.

Requirements:
Basis()

Algorithm:
Function: BSplineDir(s, d, p, k)
Inc :=1/s; T :=ts;
while T <t
{

P :=(0, 0)

for I :=1 ton

{

P += Basis(T, I,d, k) x P;

r+:=P; T +=Inc;

return r

Basis
The B-spline basis function. This algorithm is an implementation of the basis function as defined by equation

Q).

Given:

t € R (desired ¢ value); i € Z" (desired interval number beginning with interval 1); d € N (desired degree of
polynomial beginning with 0); k =4 (t1, ", turar1) (knot set).

Return:

r € R (return value of basis function at t).

Algorithm:
Function: Basis(t, i, d, k)
ifd# 0 then
{
if t;, <t <tigr1 then
{



t—t t t

l [ti+d - 0] el [ti+d+1 -L# 0]
D, := liva =1 ; D, = livan — 1 ;
0 [otherwise] 0 [otherwise]
P_:{O D=0 P:{o 0, =0]
b D, x Basis(t,i,d —1,k) [otherwise] 2 D, x Basis(t,i +1,d —1,k) [otherwise]
r:=P + P
}
else
{
r:=0

{1 6, <t<t,]

0 [otherwise]

return r

C.2 deBoor Algorithm

This is an efficient implementation of the deBoor algorithm for displaying any B-spline. The algorithm returns a
sample of points on the specified B-spline curve. For a direct (but inefficient) algorithm, see paragraph D.2 The
Algorithm in Appendix D: Derivation of the deBoor Recursive Function.

The following algorithm was deduced from the deBoor recursive function (see Appendix D: Derivation of the
deBoor Recursive Function). The density value specifies the number of returned points returned per interval.

Given:

s € N (desired density value, eg: 10); d € N (desired degree of polynomial beginning with 0); p =4 (P1, -, P,)
(control points); k =q (t1, ", tsra1) (knot set for non-uniform B-spline) or k =4¢ 0 (for uniform B-spline).
Return:

r =q4r sequence of points on the B-spline curve.

Requirements:
BSplineQSeq(), DeBoor(), UDeBoor()

Algorithm:

Function: BSplineAlgo(s, d, p, k)
for T :=d+1 ton

{

L k=0l Nt o= 47 0] g = BSplineQSeq(I, d, p);
I [otherwise] I+1 [otherwise]

TDifF i NxtK-T [NxtK—TiO]; Inc := TDiff /s;:
[otherwise]

repeat [* Calculate a sample of points between the current (T) and the next knot value (NxtK). *]
{

7 o= T += Inc;

DeBoor(I,d,T,k,Q) [k # 0]
UDeBoor(I,d,T,Q) [otherwise]
} until T > NxtK



_ {DeBoor(”’d’NXtK’ k,Q) [k = 0] [* Calculate the last point. *]

~ |uDeBoor(n,d,NxtK,Q) [otherwise]

return r

BSplineQSeq

Returns a subsequence of initialised control points corresponding to a given interval.

Given:
i € Z" (desired interval number beginning with interval d + 1); d € N (desired degree of polynomial beginning
with 0); p =4 (P1, -, P,) (control points).

Return:
r =q4¢ subsequence of control points.

Algorithm:
Function: BSplineQSeq(i, d, p)
ro:={(P;, -, Pia)

return r

DeBoor
The deBoor function for a particular interval.

Given:

i € Z" (desired interval number beginning with interval d + 1); d € N (desired degree of polynomial beginning
with 0); # € R (desired ¢ value within interval i to i + 1); k =4t {t1, ', turar1) (knot set); q =ar {Q1, -, Qu1)
(subsequence of control points).

Return:
point.

Algorithm:
Function: DeBoor(i, d, t, k, q)
Q:=gq
for J:=1tod
{

Idx :=1

for I :=i toi—d+J step -1

{

% [t1+d+1—J - tI * 0]
o =4 s Tl 7 Quan 1= (1 — @)Quuax+y T 0Qera) 7

0 [otherwise]
Idx :=Idx + 1
}

return Q(1)

UDeBoor

The de Boor algorithm for a uniform B-spline with an implicit knot set.

Given:

i € 7" (desired interval number beginning with interval d + 1); d € N (desired degree of polynomial beginning
with 0); ¢ € R (desired ¢ value within interval i to i + 1); g =4t {(Q1, **, Qu+1) (subsequence of control points).
Return:

point.



Algorithm:
Function: UDeBoor(i, d, t, q)

Q:=gq
for J:=1 to d
{
Idx :=1
for I :=i to i—d+ J step —1
{
7 +1-020]
q=id+1-J 7 Quan = (1 — @)Quaxr1) T 0Q1an 7
0 [otherwise]

Idx :=Idx + 1

return Q(l)

C.3 deBoor Algorithm for 3" degree B-spline

This section describes an implementation of the deBoor algorithm for calculating 3rd degree B-spline values
(with any knot set) as poly-bezier points. The function returns poly-bezier points defining the B-spline curve.
This algorithm can be used for software systems that render Bezier curves directly for the returned poly-bezier
points. If a software system renders B-splines directly, then this algorithm need not be used. The following
algorithm was deduced from the so-called “polar forms” of B-splines (see 3.4 Polar Forms).

Given:
p =at (P1, -, P,) (control points); k =4 (t1, =", turar1) (knot set).

Return:
r =q¢r sequence of poly-bezier points defining the B-spline curve.

Algorithm:
Function: BSpline3Algo(p, k)
for T :=4 ton

{
P:= <PI—39 P Py, PI>
-t
/ . _I[I [II+2 L, # O]
Q=4 w2 ;o Qi :=aPat (1 —ai)Ppe:;
0 [otherwise]
t.,—t
% [t1+2 L, # O]
@, =14 ;o i=aPey (1 —an)Pe);
0 [otherwise]
t,.,—1 t.,—t
IHI—_I [t1+2 —L# 0] L_I [t1+3 —L# 0]
a, = I+2 I ; a, = I+3 I ;
0 [otherwise] 0 [otherwise]

Qs := (P + (1 — 42)Pg)) + (1 - a1)Q

if I =4 then [* Calculate first point. *]

—t
- [tm L, # O] R [tm L, # O]

Q= I+~ Y1l ; a, = 1l ;

0 [otherwise] 0 [otherwise]

r+:= 0!1Q1 + (1 — 0!1)(0!2]?(2) + (1 — 0!2)]_3(1))



}

rE=Qy rti=Q r =0y

return r

Algorithm for Uniform 3" degree B-spline
This section describes an algorithm for calculating uniform 3™ degree B-spline values as poly-bezier points. The

function returns poly-bezier points defining the uniform B-spline curve. The following algorithm is a special
case of the algorithm above.

Given:
p =ar {P1, -, Pu) (control points); A, =4 boolean (true if curve is to be anchored at the beginning); A4, =q4r
boolean (true if curve is to be anchored at the end).

Return:
r =q4¢ sequence of poly-bezier points defining the uniform B-spline curve.

Algorithm:
Function: BSplineBezPts(p, 41, 42)
r+:= 1/5P1 + 2/3P2 + 1/6P3

for T :=2 ton-2
{

rai="Po VP r = VP VP = VP VAP + VP
}

if 4, then
{

roi= <P1a 2/3P1 + 1/3P2, 1/3P1 + 2/3P2> ++ r
}

if Az then
{
vy i=r++ <2/3P;171 + 1/3Pn, 1/SPn—l + 2/3Pn, Pn>

return r

C.4 Near Interpolated B-spline Function
The following near interpolated B-spline function accurately approximates an interpolated cubic B-spline

through given sample points of a curve (See chapter 4, Emulating Curves Using B-splines). An accuracy factor
(f) of 1.353 gives a good approximation.

Given:
p =a {P1, -, P,y (control points); f =4 accuracy factor.

Return:
r =q4¢ sequence of control points defining the B-spline curve that approximates the interpolated cubic B-spline
through the given control points (sample points).

Algorithm:
Function: NIBSpline(p, f)
C .= 1_f; r+:=Py;
2
for T :=2 ton-1
{
Cur :=P;; Prv:=P,,; Nxt:=P.;

if not (Prv =Cur or Nxt =Cur) then



{
r +:= fCur + C(Prv + Nxt)
}

else

{
r +:=Cur

}

return r

To produce a good approximation of a B-spline curve of degree d, control points p, and knot set k, the function
NIBSpline(BSplineAlgo(8, d, p, k), 1.353) can be called. The returned control points, z, of the called function
are cubic B-spline control points, which can be rendered directly, or passed to BSplineBezPts(z, true, true)
for rendering via Bezier curves.

Appendix D: Derivation of the deBoor Recursive Function

The deBoor algorithm is an efficient means by which to calculate a point on a B-spline curve. In this appendix,
the said algorithm is derived mathematically from the definition of a B-spline.

D.1 The Mathematical Derivation

In this derivation, sequences begin with index one, rather than zero.

The standard definition of a B-spline curve (beginning with index one) with knot set (¢, -, t,rar1) is as follows.
s(;)zigd(z)p_ [tan <t <t t ER;n>d+ 1] (D1)

By expanding B, «(t) via the basis function definition, equation (D1) becomes

s() =Z[(,’_ B0+ (e ,-+],d_](r)]P,-
= Z( ) L (OP, + Z(M/)BMH@)P{ (D2)
= (f ) La (OP, +Z( - ] a1 (DP; +Z(—) a1 (OP, +(%]Bnﬂ,(,_l(t)l’n

1+d — :+d+1 n+d+1 n+l

The support for the first right-hand term in the last equation (D2) is [#, t4+1). This interval is outside the interval
for ¢, [ts+1, tan1), defined for the whole B-spline curve in equation (D1), therefore, the first right-hand term of the
last equation (D2) is zero for all ¢. Likewise, the support for the last right-hand term in the last equation (D2) is
[ti+1, tira+1). This interval is outside the interval for ¢, [¢s1, t.+1), defined for the whole B-spline curve in equation
(D1), therefore, the last right-hand term of the last equation (D2) is zero for all ¢. The last equation (D2) can
therefore be simplified to its middle two right-hand terms, as follows.

S(1) = Z( tt — j (P, + i(%)BM,HU)PI, (D3)

i=2 i+ 1+d+l

If the sum of the last right-hand term of equation (D3) is altered to begin with 2 and end with 7, the index of ¢
will need to have 1 (one) subtracted from it for the value of the sum to remain the same. Equation (D3) is
therefore equivalent to

s =Y (P + Z s LB (0P
[ pnom 3= )

i=2

(o

i+

(D4)




Note that, in the last line of equation (D4), B; . has been factored out of the sum, and the remaining two terms
swapped.

If the following assignment is made,

Q0= (=l ([t (09

i+d i+d i

then equation (D4) becomes
S0 =2 8.,.0Q,0 (PO
i=2

Equation (D6) is in a similar form as equation (D1), so the process above can be applied again to equation (D6).
The final result is

s =3 B,,,0Q,0 (O

where

Q0= oo+, 70 o (O

i+d-1

If the process is applied again with equation (D7), and repeated recursively, eventually the basis function of
equation (D7) becomes B;o. The final result will be

S(t) = iBi,O(t)Qd,i(t) [tin <t<twi; t ER;n>d+1] (D9)

i=d+1
where
Q (1) = (=0, (NQ,,, () + e, (NQ,,,(1) [j>0] (D10)
" P, [/ =0]
and
t—t .
a/,i(t):—l [] >0] (Dll)
' i+d—j+1 i
Note that
—t t =t
1 _ aj’i (t) — 1 _ t t, — i+d—j+1
ird—j+1 ti ti+d—j+1 - ti

which corresponds to the coefficient of Q,,_i(¢) in equation (DS8).
If t € [, t+1) for some integral value of & inclusively between d + 1 and n, then equation (D9) reduces to
S(t) = Qui(?) [ti<t<ti;t ERI[k=d+ 1, n] (D12)

This is because, in equation (D9), B:o(¢) = 1 only in the interval ¢ € [¢, t;+1) (Where, in this case, [ = k); Bio(t) =0
outside the said interval. Note that the right hand side of equation (D12) is recursive via equation (D10).

The deBoor recursive function is equation (D12) in conjunction with equations (D10) and (D11).

D.2 The Algorithm

The deBoor recursive function can be implemented directly in software. However, a direct implementation is
inefficient. For an efficient implementation, see C.2 deBoor Algorithm in Appendix C: B-spline Algorithms.

The direct algorithm is as follows. All arrays (sequences) are one-based.



Given:
s € R (desired density value, eg: 30); d € N (desired degree of polynomial beginning with 0); p =4 (P, ---, P,,)
(control points); k =4 {(t1, =", turan) (knot set for non-uniform B-spline) or k =4 0 (for uniform B-spline).

Return:
r =q¢¢ sequence of points on the B-spline curve.

Requirements:
DeBoor(), UDeBoor()

Algorithm:
Function: BSplineAlgoDir(s, d, p, k)
Inc :=1/s
for I :=d+1 ton
{
a {tl [k = 0]. . {tm [k = O]. ,
I [otherwise] I+1 [otherwise]

while T < NxtK
{

e {DeBoor(d, ,d, T, p,k) [k =#0] T += Inc;

UDeBoor(d,I1,d,T, p) [otherwise]

[* Calculate the last point. *]

DeBoor(d,n,d,NxtK, p,k) [k # 0]
UDeBoor(d,n,d,NxtK, p) [otherwise]

return r

DeBoor
The deBoor function for a ¢ value of a particular interval between two adjacent knots. Note that the function is
recursive.

Given:
j € N (used internally); i € Z* (desired interval number beginning with interval d + 1); d € N (desired degree
of polynomial beginning with 0); 1 € R (desired ¢ value within interval i to i + 1); p =4t (Py, -, P,.) (control

points); k =ar (t1, **, tarar1) (knot set).

Return:
r =q¢¢ point on the B-spline curve at t.

Algorithm:
Function: DeBoor(j, i, d, t, p, k)
t—1t,
: [ti+d+l—j - # 0]
a = ti+d+l—j ti
0 [otherwise]

if j>0 then
{
r:=(l —a)DeBoor(j—1,i—1,d,t, p, k) + aDeBoor(j — 1, i, d, t, p, k)

return r




UDeBoor
The de Boor algorithm for a uniform B-spline with an implicit knot set, and for a ¢ value of a particular interval
between two adjacent knots. Note that the function is recursive.

Given:

j € N (used internally); i € Z" (desired interval number beginning with interval d + 1); d € N (desired degree
of polynomial beginning with 0); € R (desired ¢ value within interval i to i + 1); p =4t (Py, -, P,.) (control
points).

Return:

r =q¢¢ point on the B-spline curve at t.

Algorithm:
Function: UDeBoor(j, i, d, t, p)
t—1i
— [d+1-7#0
_ d+1-j [ / ]
0 [otherwise]

if j >0 then
{
r :=(1 —a)UDeBoor(j—1,i—1,d, t, p) + aUDeBoor(j — 1, i, d, t, p)

return r



Definitions
anchored

See page 8.

B-spline curve

See page 1.

basis function

See pages 1 and 20.

blending function
See pages 5 and 21.

control points

See pages 1 and 19.

knot points

See page 1.

knot set

See page 1.

Kknots

See page 1.

near interpolation

See page 14.

non-uniform

See page 2.

polar values

See page 13.

poly-bezier
See page 10.

spline segment

See page 1.

trimmed knot set

See page 13.

uniform

See page 2.
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