ETAC Code Generator

ETAC Code Generator Language Version: 1-1

Legal Information
, (the ETAC Code Generator logo) is an unregistered trademark (™) of Victor Vella.

ETAC is an unregistered trademark (™) of Victor Vella for computer software incorporating an
implementation of a computer programming language. There may be other owners of the
“ETAC” trademark used for other purposes.

MS-DOS and Windows are registered (®) or unregistered (™) trademarks of Microsoft
Corporation.

Unicode is a registered trademark (®) of Unicode, Inc. in the United States and other countries.

The author of this document shall not be liable for any direct or indirect consequences arising
with respect to the use of all or any part of the information in this document, even if such
information is inaccurate or in error. The information in this document is subject to change
without notice.

ETAC Code Generator

Victor Vella

Published by Victor Vella
(1 August 2020)

First Published: 1 February 2019
Second Edition: 1 August 2020

Copyright © Victor Vella (2019-2020). All rights reserved.

Permission is hereby granted to make any number of exact electronic copies of this
document without any remuneration whatsoever. Permission is also granted to make
annotated electronic copies of this document for personal use only. Except for the
permissions granted, and apart from any fair dealing as permitted under the relevant
Copyright Act, no part of this document may be reproduced or transmitted in any form
or by any means without the express permission of the author. The copyright of this
document shall remain entirely with the original copyright holder.

Preface

The ETAC Code Generator began its life as a simple non-programmable general text code
generator written entirely in the C++ programming language in the year 2006 for my own
personal use. At that time, I had intended to later create a more sophisticated version of the code
generator in C++, but also programmable via the (unreleased) TAC programming language.
However, in the year 2015, instead of creating a new C++ version of the code generator
programmable via TAC, I decided to redesign the internal structure of the code generator and
implement it entirely in the ETAC™ programming language. And thus, the ETAC Code Generator
was born.

Because the ETAC Code Generator is written in ETAC, the Run ETAC Scripts package must
already be installed to use the ETAC Code Generator. However, for those users who do not wish
to install the Run ETAC Scripts package on their computer, I decided to also release an executable
implementation of the ETAC Code Generator which internally contains a minimal implementation
of Run ETAC Scripts. The executable implementation of the ETAC Code Generator is therefore
also a portable implementation which can be installed on a removable disk and run from any
suitable computer.

This is the first production release of the ETAC Code Generator, updated to process Unicode®
template and data files.

Victor Vella

Perth, Western Australia
1 August 2020

Contents

PrEfaCe. . uueieeeeeeceeecreeeeseecneeecsnenessasesssnsessassessssesssssessasssssasessssssssssssssasssssasessasssssasessasssssnnasans v
COMEENLS...cciieieeiecrreeiecrseteessnenecsssnseesssssssssssnsasssssnssssssssssssssnsssssssnssssssassssssssssssnsnssssssssssssns vi
Tables and Diagrams.......ieienenininininniiiiiiiiininiiemmsisssssssssses viii
Document CONVENEIONS.......ueiccerreeeeerrreeecccsseeecsssassecsssssesssnsssssssnssssssanssssssssssssssnssssssasssssns ix
INEEOAUCHION. .. eeeeeeeeeeteeereeeereeecseeeeseeessaeeessseeessssessasesssssessassessasessssesssssesssssnsasssssnnsssssssnns 1
T OV I VIEW.auuueeiieceeeeccneeecccneteccssneeesssnseecsssnsessssssssssssnsasssssssssssssssssssssssssssnsssssssnsassssssnnnnes 3
1.1 GENETAl FALUTICS....iiiiiiieiiie ettt ettt e e et e e e tbe e earee e enesaeeaeesnssaaeaeeanes 3
1.2 REQUITEIMENTS ...ttt ettt ettt et e et e e 3
1.3 Overview of the ETAC Code Generator........c.ueeeeeiuiiiiieiiiieececiieeeeeieeeeeeeieee e e e eeeeeeenaans 3
1.4 The Input and Template ATZUMENTS.......ceiiuieiiiiiiieiieeie ettt e e eree e 4
1.5 Overview of @ Template File ..o 5
2 The Template File......iiiiiiniiiiiinininiisininennsisisesscsssessesssssssssssessssssaees 7
2.1 The Header BIOCK.......c.oiiiiiiiiie ettt et e e e e e e earaaeeeeeanns 7
20 T B o3 410 1 (S () o~ OO UR U UUUPPR 7
2.1.2 Header BIoCk EXamPIe......cc.ooiiiiiiiiiiieiieie ettt ettt st 11
2.2 The Template Line BLOCK.....coooiiiiiiiiiiiee e 12
2.2.1 SPECial SYMDOLS.ccuuiiiiiiiieieecee e ettt e e e e e e nnraaaee s 14
2.2.2 INSTIUCTIONS ..eiiiiiieeiie et eeiee ettt ettt e ettt e e te e e e bt e e eabeeesabeeesaseeesasaeessseeesseeensseesnsseeseennssseeaeannns 18
2.2.3 INStIUCHION SUMIMATYiiiiiiiiiiieeiiieeieeeetteeeiteesteeesteeessteeessaeeessseeesseessseesssaeesesssssneeesannes 18
2.2.4 InStruction DefiNitiONS....cc.iiiiiiieiiiieciec ettt e et e e e e e e taeesveeee e e anaeeeaeenes 19
2.2.5 COMMEANAS...cciiiiiiieiiie ettt eee e e et e e e ettt e e e e taeeeeeeateeeeeetaeeeeaaataaaeeeeeeasnnsssssssaneeeens 29
2.2.6 COMMANA SUMMATY ...eeiuiiiiiieiiiietieeieeieeeteeteesteeteeseaeeseessteeseesseeanseesseasnnsaeesnsseeessseeesnsses 29
2.2.7 Command DefinitIONS.cooiiiiiiiiiiiiie e et e e e e e et e e e e e e e e eaaesaaaaeeeeeeeas 30
3 ProcessSing Stages.......ciiinieninninninntininniniininininiineiisisisssssssssesessessens 52
3.1 Meta-code ProCesSING StaZeS....ccccuiiiiiiieiiieeiieeeiee ettt et e e eeaeesrreesaae e e esssnaeeaeeenns 53
4 Input Dialog BoX....ininininniiinininininininiiiiiiinisisisissssssssssssses 55
4.1 Dialog BOX DEtailS....ciciieiieiiiieciiiece ettt a e e e nara e e e e eannes 55
5 Operating the ETAC Code Generator............ccieiensensenennisncssensecssesssesseesacesens 57
5.1 ComMANA LINC.....ciiiiiiiiieiiiei e et e ettt e e e ettt e e e e etaa e e e eetaeeeeeeeeennnnnnes 57
5.2 INitialisation File... ..ottt e etae e e e 60
5.3 Executing fTom ETAC SCIIPt...ic ittt evae e stee e svee e e e e sanaeeaeeenes 61
5.4 Executing from ECGL Commands........c.ccccouiiiriiiiiiiieeiiieeciee e ciee st svee e e e e sevveee e e 62
6 Programming the ETAC Code Generator..........cieeinenecscnnisnesensensessessessecesens 63
6.1 USING ETAC SCIIPT ittt ettt ettt sttt st st 63
6.2 Intrinsic Global FUNCLIONS.........cooiiiiiiiiiiiie et e e e 63
6.3 TexXt ATTAY FUNCHIONS ..coitiiiiiiiii ettt ettt e et e e et eeeaeeeeas 64
6.4 Debugging ETAC SCIIPT...coiiiiiiiiiiiieeeeet ettt sttt st 64
7 ETAC Code Generator Examples.........ciinnsnsnsenencsininnisensensecsesseesessscesees 65
7.1 EXAMPIE ettt sttt et 65
7.2 EXAMPIE 2.ttt 66

7.3 EXAMPIE 3ttt 68

7.4 EXAMPLIE 4.ttt e et e e e ta e e e ta e e e baaeeeennraneeeeaanns 70

7.5 25 € 1301 o] [T TSP SUPRURPPPPRRN 73
7.6 EXAMPLE 6.t et et e e et e e e ta e e e baaeeeennrbaeeeeannn 75
8 EGCL FUNCHON RELEICICE...cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesses 79
8.1 GLODAL VaTTabLeS .. oo e e e e e e e e e e e e e e e raaeeenans 79
8.2 GENETAL FUINCIIONS ettt e e e e e e et e e e e e e e e e re e aeeeeeeereaeeenenans 80
8.2.1 FUNCHONS DY CAtEZOTY ..cecuiiiiiiiiieiieetieiee ettt te ettt steeateeaeesbeesateebeasnseeeensaeesensseeeensneens 81
8.2.2 FUNCHION SUMIMATY ...eiiitiiieiieeriieeiiieeeteeeeteeesseeestreeessseessseessseesssseesnsseessseeesssssesssesesssesennnns 82
8.2.3 FUNCHION DO I IONS e e es 83
8.3 Data ObBJECLE: £EXT AFTAY ccuveeeeeeiieieeeeeee ettt ettt e ate et eessaeeensaeeennees 123
B3] DAtA M EIMIDEIS et e e e e e e e ee e e e e e e e e aa e e e et ana—ns 123
8.3.2 FUNCHION SUMIMATY ..c..ieitiiiiieiiieetieiie et estteeteesteeebeenteesebeesseesnbeeseessseeseessseenseensseenseessseenses 124
8.3.3 FUNCHION MEIMIDETS .ot e e e e e e e e e e e e eee e aeeeeeeaaeeenanaes 124
Appendix A: HTML Template Files.........ccuevivinrunsuencnsnsensncscnsensensecsecennees 129
A.l O UG ION ettt e e e e e e et eeae e e e e e e eenaaaaes 129
A.2 HTML in a Template File.......oooiiiiiiiiieeeeee e eiree e e 129
A3 HTML 10 @0 EXTEIMNAL FILE.unniiiiiiiiee e e e e e 130
Appendix B: Self-contained ETAC Code Generator..........ccceeceruerruersecsuercnneee 132
B.1 O UCTION ettt e e e e e et eaae e eeeeeaneeeenanaaaes 132
B.2 SYStEmM ReQUITEIMENTS . ..cccviiiiiiiiciie ittt e tee e st ae e saaeeessbeeesaaeeeennnnnes 132
B.3 Self-containNed INSTALLatION .cceueneee e e e e e e e e e e e e eeeaaeens 132
B.3.1 The Initialisation File ..., 133
B.4 ETAC Code Generator EXECULIONcooveiei i 134
B.4.1 DITECE EXOCULION e e e e e et e e e e e e e e e e e e e e e e e e aeeeeeaaeeeans 134
B.4.2 Command Line EXECULIONccoiiiiiitiiitiieieeeeeeeeeeeeeeeeeee e 134
B.4.3 ETAC SCript EXECULIONcciiiiiiiiiiieiiieeeiie ettt e et e e e taeesaae e e esaaaeeeeeensnaeaaeeennns 135
B.5 ETAC Script DebDUZZING..c.vviieiiiiiiii ettt e e e e e st eeraeesaaeaeeeenes 135
B.6 Uninstalling the ETAC Code Generator.........cccuvieeiieeeiieeiiieecieeeeveeesieeeeeeeeeesvvaeeeeens 136
33100 F 070 1 o] 1} /8OO 137

L[0T EF: 2T 138

Tables and Diagrams

DOCUMENT COMVENTIONS .. .eeutiiitiiietteiterttete ettt ettt et et sttt eatesbe e bt eatesbeebesatesbe e beestesbeentesbaenseentesneeeas X
ETAC Code Generator INPUt OULPUL.....cc.eeiiiiiiiiiieeiieeie ettt ettt et e siteebeeseeesateesseaebeeeenes 4
Special Symbol Syntax DIa@raml.......cccueeciiiiiiiiieiieeiieee ettt ettt ettt e s enbeeeeenneeas 14
ECGL INStruCtiON SUIMIMATY ...cuviitieiiieiieeiteeite st et e steetteseteeteesiaeebeesseeeseesseessseesseessseesssesnseesseessseesns 19
DATE FOormatting CRATACTETSceeiuieiiiieiieitieeieeeiie ettt ettt e et e st e et esteeteesaaeenseessaeesnsaeesanbeeesanseeennns 21
Header BIOCK Parameters......couiriiiiiiiiieieiieece ettt ettt ettt et e s 23
ECGL Command SUMMATYccccuiiiiiiiiieiieiie ettt ettt ettt et e st e ebeestteesbeesseesnseesseesnbeeesnseeennes 30
Meta-code Stage NUMDETS. ...ccuiiiiiiiieeieeie ettt e et e st e e bt esaaeeateesaeeenbeesseesnseesneaenseans 53
Input Dialog Box for the ETAC Code GeNerator......cccueeiuieeiieriieiiieiieeieeite et esiee et seee e sireeeeeseeaens 55
Command Line INPUt ATGUMETIES ...c..eeiuieiiieiiieiie et erite et esite et esite et e et e e beebaesabeesbeeeateeeessseeeansseesannees 57
ECGL Function SUummary fOr SCIIPLS....cciiiiiiiieiieiiiesiie ettt ettt et esiee et eesteesteebtesbeeseesateesnseeeenes 82
Text Array FUNCHION SUMIMATYeiiitiiiiiiiiieiie ettt ettt ettt e st te st eteeseteebeesateebeesaseesnseeesnsneeeenes 124

Pattern StIINE Ty PO i iuiiiiiieiie ettt ettt ettt e bt e et e e bt e sateesbeeenbeeseesnseenseesnbeeseeean 126

Document Conventions

The following symbolic conventions are used in this document.

Symbol

<X
Yoo
[x]
{x}
(x)
x|y

Document Conventions

Meaning

separates x as a unit of information from the surrounding text.

means zero, one, or more of the same kind as x.

means that x optional.

means that x is the default value.

groups x as a unit.

means that only x or y applies, but not both (could have more than two options).
represents omitted text (as usual).

represents a whitespace character (91 to Dis, or 20+).

represents a space character (20+).

represents a carriage return character (D).

represents a linefeed character (A).

represents the character or characters indicating the end of a text line.
represents a number in base 16 (hexadecimal).

represents a Unicode code point where x is in hexadecimal notation.
maroon coloured italic text is a link to the text’s definition.
underlined green text is a link into the document.

bold green text is a link into the document.

indicates the end of a block of document text.

Introduction

This document is for the ETAC Code Generator version 2-0-3-ena which requires Run ETAC
Scripts version 3-0-6-ena or later unless the self-contained implementation of the ETAC Code
Generator is used. This document defines ECGL version 1-1.

The ETAC Code Generator is a computer program, written in the ETAC™ programming language,
that uses programmable text template files containing special descriptive codes and text to
generate and maintain user-specified text files. The ETAC Code Generator is ideally suited to
generate source code for computer programs, but is completely universal, and can therefore
generate any form of text file. Because it is written in ETAC, the ETAC Code Generator is
released only on the Windows® operating system.

A template-based code generator typically consists of a computer program which reads a special
text file acting as a model for generating one or more text files for desired purposes. The model
file, called a template file, is produced by the user or obtained from an external source. There can
be any number of template files, each of which contains fragments of the generated text and other
special text that describe how those fragments are to be produced into the generated files. The
user supplies keywords and arguments that are used in conjunction with a template file to produce
the desired output.

At the time of this writing, most template-based code generators produce HTML output files via
any one of a number pre-existing host programming languages adapted for such a purpose. With
such code generators, program code of the host language is directly or indirectly incorporated into
a template file, and manipulates a copy of the text fragments within the template file to produce
the output files. Effectively, therefore, such a template file operates as a computer program
containing instructions based on the host language but optimised for generating text files. The
template file is processed from top to bottom in sequence during processing.

The ETAC Code Generator is a highly advanced programmable template-based universal text and
source code generator that uses a unique sophisticated declarative template language with
capabilities extended by ETAC scripts. An instance of the declarative template language, ECGL
(ETAC Code Generator Language), is incorporated into a template file. ECGL not only specifies
to create generated files, but also specifies to maintain existing text files. Thus, the ETAC Code
Generator can not only generate any number of new source files of any programming language,
but can also update existing source files with new code fragments. Unlike the template files of
currently existing code generators, an ETAC Code Generator template file is processed in a
number of passes (“stages”); one or more ECGL statement types are processed in each pass.

It should be noted that ECGL is a declarative language, not a procedural (algorithmic)
programming language. A declarative language is one that uses descriptions of the intended
output, rather than using an algorithm to specify how the output is to be constructed. A
declarative language, however, is not as versatile and as a procedural language, and so ECGL
incorporates the ability to use the procedural language ETAC for producing intricate output where
required.

For advanced uses of the ETAC Code Generator, the user needs to be familiar with the ETAC
programming language. The overview of that language is contained in the document
ETACOverview.pdf, and the full definition of the language is contained in the document
ETACProgLang(Official).pdf. This document assumes that the reader is familiar with the ETAC
programming language.

The ETAC programming language has basic support for the full Unicode® codespace (U+0000 to
U+10FFFF). However, the support is only up to the Unicode scalar value level; character strings
are not normalised. ETAC recognises only strict conformance to the UTF-8, UTF-16, and

Introduction 2

UTF-32 encoding schemes; unpaired surrogate code points are not supported. For certain
functionalities or parts thereof, only UCS-2 (BMP Unicode scalar value) characters are supported.

Changes from Previous Publication
The following sections indicate the changes made in this publication from the previous
publication (1 February 2019). Most of the changes are adaptations to Unicode®.

New Items
&U+ - @cgECGVrsnID - @cgGetStrU - @cgPutStrU

Enhanced Items

&DEL - &MI - @SYMBOL * @cgAddCmdSymb - @cgGetCmdSymbVals - @cgGetNumSymbVals
QcgGetSpecSymbVal - @cgGetSymbValAtOff = @cgGetSymbCount * @cgIncrSymbCount
@cgSetSymbCount - @cgCreateFile * @cgCreateNewFile * @cgGetWindowsDir
@cgIsOnlyDirPath = @cgPathExists * @cgAddFileData - @cgRenameDataFile
@cgFormatStr - @cgParseString * @cgReplSubStr * @cgRUnNETACFile
@cgWriteAllToOne - @cgWriteFile - 2.1.1_Parameters (<@C=> and «@P=) parameters)
2.2.1_Special Symbols (symbol-name)

1

Overview

This chapter is an overview of the ETAC Code Generator. Because the ETAC Code Generator is
written in the ETAC™ programming language, template files and generated files, as well as other
files used by the ETAC Code Generator, can contain Unicode® characters (the ETAC Code
Generator has basic support for the full Unicode codespace).

1.1 General Features
The ETAC Code Generator has at least the following capabilities.

1. From a single template line in the template file, a number of variant text lines can be
generated based on a sequence of user-specified arguments.

2. Special symbols in template lines can be automatically replaced by user-specified arguments.

3. Template lines can be conditionally processed.

4. While a template file is being processed, the included instructions and commands can be
modified and reprocessed (the internal copy of the template file is self-modifying).

5. Text lines can be automatically inserted into the template lines from any text file during
processing.

6. Generated lines can be incorporated into a template file from the processed output of other
template files.

7. Generated lines can be merged and aligned with parts of other generated lines or external
text files.

8. Text lines can be edited via ETAC script after they have been generated.

9. ETAC scripts can be defined to edit blocks of text lines in a template file in any desired way
while being generated.

10. ETAC scripts can provide user interaction during processing of the template files.

1.2 Requirements

The ETAC Code Generator is released in two implementations. Officially, the ETAC Code
Generator is released as a compiled TAC binary instruction file named ETACCodeGen.btac, along
with the ETAC source files. The Run ETAC Scripts package must therefore already be installed
to use the ETAC Code Generator in this implementation. The ETAC Code Generator is also
released as a self-contained executable program named ETACCodeGen.exe, which does not require
the Run ETAC Scripts package. The self-contained executable is actually a silent installer that
temporarily installs and runs a portable version of the ETAC Code Generator and Run ETAC
Scripts (see Appendix B: Self-contained ETAC Code Generator for more details).

1.3 Overview of the ETAC Code Generator

The ETAC Code Generator is a computer program used to generate one or more instances of text
files belonging to a class of files. Each class of files is defined in its own template file, and along
with input arguments, a user specifies a template file to the ETAC Code Generator to generate the
desired instances of the class of files. Different template arguments (which exist within the input
arguments) that are used with the same template file generate different instances of the text files
belonging to the same class of files. A femplate file can be designed by a user or obtained from
an external source.

Overview

The ETAC Code Generator can also read and maintain existing or generated text files and
template files as part of its processing. Thus, not only can the ETAC Code Generator generate
text files but it can also maintain existing text files, making it suitable for maintaining and
updating the source code files of a computer program. The ETAC Code Generator updates
existing text in a text file by matching pairs of text lines within the existing text and replacing or
adding to the text between the matching lines. The text lines that are matched are defined by the

designer of the particular template file in use.

A file that is read by the ETAC Code Generator can be a Windows-1252, UTF-8, UTF-16, or
UTF-32 file. If an input file is a UTF file, it is highly recommended that the file has a BOM
signature (including for UTF-8) to avoid a possible misinterpretation of the file data.

If all the characters of a generated file are a subset of the Windows-1252 character set, then the
file data will be written as a Windows-1252 file. Otherwise (if not all a subset), the file data will
be written in the same UTF encoding scheme as the original file on disk, or if the file data was
not obtained from disk or the original file was a Windows-1252 file, then the file data will be

written as a UTF-8 file with a BOM signature.

During processing, an internal copy of the template file is modified and finally written to the

output file before current ECG session ends.

The following diagram is an overview of the input and output data required by the ETAC Code

Generator.

ETAC Code Generator Input Qutput

1

[Main template file and j

input arguments.

Existing
template files
and text files.

ETAC CODE
GENERATOR

file.

h 4

<
Generated or

Output file for
main template

modified template) OUT)

files and text ﬁles./

Code Generator Workflow

The ETAC Code Generator accepts a main
template file along with input arguments as
initial input (via a dialog box or the
command line). The main template file
may contain commands to accept additional
template files and text files if required.
Copies of the input files are modified, and
may be reprocessed any number of times to
produce the desired generated files if
requested.

The ETAC Code Generator can run
interactively if a template file requires it.

1.4 The Input and Template Arguments

The input arguments for the ETAC Code Generator are in the form of keywords and their
arguments. The input arguments are directly supplied on the command line when the ETAC Code
Generator program is run. In addition, the input arguments can be optionally supplied or
modified by the user in the ETAC Code Generator input dialog box.

The template arguments within the input arguments are used by the ETAC Code Generator in
conjunction with the template file for generating specific generated files. The input arguments
can specify that the template arguments exist in a text file rather than within the input arguments
themselves. Alternatively, ETAC script existing within a template file can create an appropriate
dialog box to request the template arguments from the user.

Overview

1.5 Overview of a Template File

A template file contains template lines consisting of special symbols, instructions, and commands
enclosed within angle brackets (<...>) and embedded in the text to be generated. The special
symbols, instructions, and commands are called meta-codes. An internal copy of the template
lines is modified by the meta-codes over a number of stages, then written to a specified output
file. That output file is the main generated file. The template lines can also be modified by
ETAC scripts embedded within instructions and commands in the template lines. There are
commands that allow some of the femplate lines to be generated into other generated files, and for
text from other files, including files generated from other template files, to be included into the
generated files. A user supplies the name of a template file, a default output destination folder
for generated files, and some template arguments (in the form of keyword-arguments) to generate
the desired files. Alternatively, if a template file is appropriately designed, the contents of some
or all of the generated files can be output to the single output file.

A template file requires a header block, which includes a keyword template used for parsing the
template arguments into the appropriate values for use with the special symbols. To generate
files, a user specifies the template file to be used and template arguments to match the keyword
template specified in the template file. The user can also specify the default output file path. The
template arguments supplied by the user determine the files and their contents to be generated
from the template file. For example, if the user specifies CPPSourceFiles.ecgt as the template
file and «(CLASS= abcTextWin, CWnd WNDBASE MFC BC» as the template arguments, then the
ETAC Code Generator generates source files abcTextWin.h and abcTextWin.cpp based on the
CWnd class. A template file can also use ETAC scripts to manipulate generated files and the copy
of the internal template file itself. The scripts are typically part of the contents of a template file.

A template line can contain special symbols. The value of a special symbol is supplied by the
user as part of the template arguments. A special symbol can modify the supplied value by
making it all upper-case or lower-case, and appending it with the result of a simple mathematical
expression based on the currently generated line number. In the simple case, a special symbol is
merely replaced by its value in a femplate line. For example, if a template line is

«(KCLASS NAME>: :<CLASS NAME> (CWnd *pParent) :<BASE CLASS> (<CLASS NAME>::I1DD,
pParent)) (where «(<CLASS NAME>) and «<BASE_CLASS>) are special symbols), and the values of
the special symbols as supplied by the user are <abcTextWiny and (Window», respectively, then
the line <abcTextWin: : abcTextWin (CWnd *pParent) :Window (abcTextWin: :IDD,
pParent)) internally replaces that template line, producing a generated line. This example is the
simplest use of special symbols.

A template line can contain embedded instructions which are specified in the form of keyword-
arguments. Instructions are mainly used to perform text editing operations on the template line
before it is converted to a generated line. An instruction can move the current output character
position to a different position, insert and delete text, and align the output text while the line is
being generated. An important instruction activates an ETAC script which returns text replacing
the instruction. As a simple illustration, the following instruction (shown in bold blue)
embedded in a template line will replace itself with the string “red” if the ETAC variable,
Condition, is true, or with “green” if Condition is false:

It was a <&FNT: [=({@IfElse(Condition "red" '"green");})]> ball

The generated line will be either <It was a red ball)or «<It was a green ball) depending
on the value of Condition.

A template file can contain commands which are specified in the form of keyword-arguments.
Commands exist alone as text lines in the template file. There are commands to direct the output
of the generated lines to various files, delete and insert text into the generated files (and other
text files) at positions specified by a search pattern string, conditionally execute template lines,
iterate through a sequence of template lines, define ETAC script functions, insert the output of

Overview

another session of the ETAC Code Generator, insert the text lines of another template file,
reprocess sections of the template lines, modify the template lines including modifying
commands and instructions, and more. Note that when the template lines are modified, only an
internal copy of those lines are modified, the actual disk content of the template file is not
modified. That modified internal copy is finally written to the output file.

2

The Template File

A template file consists of two sections — the header block and the template line block. The
header block contains information for the ETAC Code Generator for processing the template
lines. The header block of a template file must be first. The template line block follows the
header block and contains the actual template lines and, if required, ETAC script fragments to
produce the generated files.

2.1 The Header Block

The format of the header block is as follows. The very first line of a template file is the start of
the header section, and must contain the version number the ECGL used with the femplate file as
in the following example: <@ECG V1@>. The line must exist as the first line alone. The second
line in a template file is the heading which will appear at ‘Title’ in the ETAC Code Generator
input dialog box. The format of the heading is «@string@>, where string is the heading which can
contain spaces, for example, @Infinite Array Derivation@. The heading must exist on a
single line alone. The rest of the lines in the header block are the parameters of the template file
in the form of keyword-arguments as follows: <«@D=description> <@C=comment> <@0=out-path>
<@S=settings> «QT=ka-template> «<@P=symbol-names>. The last line in the header block must be
<@endhead@>, which must exist on a single line alone.

The header block (the first part of the template file) is therefore of the following format:

QECG Vversion@
@heading@

parameters
@endhead@

The parameters are described below.

2.1.1 Parameters

A description of the header block parameters follows. ETAC comments, which are ignored, can
be present among the parameters.

@D=description [optional]
description is text indicating a short description of the text generated by the template file.
This description will appear in the ETAC Code Generator input dialog box under ‘Description’.

@C=comment [optional, repeated]
comment is the text for an arbitrary comment. There can be any number of these keywords. If
comment of the first keyword (@C=) is delimited by double-quote ("’ U+0022) or single-quote
(“'7 U+0027) characters, then the text contained within those quote characters is displayed to
the user when the ‘Details’ button is clicked in the input dialog box. Otherwise, if no «@C=»
keyword exists, or the first comment is not delimited by double-quote or single-quote
characters, then the ‘Details’ button will be disabled. If comment is delimited by double-quote
characters, then a double-quote character within comment must be expressed by having a
backslash (U+005C) immediately before it. A backslash followed by a space (U+0020) within
comment will be expressed as a backslash. If comment is delimited by single-quote characters,
then the first single-quote must be preceded by ‘«’ (U+00AB), and the last single-quote must

be followed by “»’ (U+00BB), and the text in-between the single quotes is interpreted as
given, except that unmatched ‘«’ and “»’ characters must be immediately followed by the
macron character © ° (U+00AF).

The second and subsequent @C= keywords (if they are present) are not displayed to the user.

For example,

This is a template file comment
displayed to the \"user\" in three lines.
»And this is an 'escape-quoted' file path: \ \"file\path\ \".

@C=This comment will not be displayed to the user.

will display the first comment, but not the second, as

This is a template file comment
displayed to the "user" in three lines.
»And this is an 'escape-quoted' file path: \"file\path\".

when the ‘Details’ button is clicked in the input dialog box.
The first comment could have also been written with single-quote character delimiters as

This is a template file comment
displayed to the "user" in three lines.

» And this is an 'escape-quoted' file path: \"file\path\".

Notice the <») at the beginning of the third line above, which is interpreted as “»’. Single-
quote character delimiters effectively allow raw text to be entered.

@O=out-file [optional]
out-file specifies the file path of the default output file into which the generated lines are to be
output if the output file path is not specified by the user in the input arguments. 1f this option
1s absent, the special directory «Desktop: : ?» is assumed for out-file. The <Desktop: :» part
specifies to output the generated lines to the Windows® Desktop; the «?» part indicates a
unique program-generated file name of the form «ECGOutput....txt>), where ... is an eight digit
random number. «Desktop: :> and ¢?> can be used separately.

If out-file contains backslashes, it should be enclosed within single-quote or double-quote
characters, otherwise double backslashes must be used.

Examples of this option follow.

[* out-file is a generated file on the Windows Desktop. *]
@O=Desktop::?
@O=Desktop: :\\?

[* out-file is a generated file in the folder ‘MyFolder’ on the Windows Desktop. *]
@O="Desktop: :\MyFolder\?"

@O="Desktop: :MyFolder\?"

@O0=Desktop: :\\MyFolder\\?

@O=Desktop::/MyFolder/?

[* out-file is a generated file in the folder ‘C:\User\Files’. *]
@0=C:\\User\\Files\\?

[* out-file is the specified file. *]
@O="C:\User\Files\Generated.txt"
@O0=C:/User/Files/Generated. txt

[* out-file is the specified file relative to the current directory. *]
@0=Files\\Generated. txt

@S=settings [optional]
settings 1is for the settings, in keyword-arguments format, relating to the template file. The
syntax for settings is:

[{PROCESS} | NO PROCESS] [{NO CHECK} | CHECK] [BACKUP] [IGNORE BAD SYMB]

PROCESS
This is the default option to allow the ETAC Code Generator to produce its generated files.

NO_PROCESS
This option prevents the ETAC Code Generator from producing its generated files.
NO PROCESS is typically used with CHECK to check the syntax of the template file without
generating files.

NO_CHECK
This is the default option that prevents the ETAC Code Generator from syntax checking the
instructions and commands within the template file. However, some less thorough syntax
checking is still performed during the code generating process.

CHECK
This option allows the ETAC Code Generator to syntax check the instructions and
commands within the template file. 1f a syntax check fails, then the ETAC Code Generator
will not perform the code generation process, and an error file (called a “check-file”) will
be created on the Windows® Desktop (or the current directory if the Desktop could not be
written to). The check-file contains the output file as far as it could be processed. The log
file will refer to the line number in the check-file that caused the error. The format of the
check-file is: <(ECGTCheck-date-time.txt>, where date is in the form YYYYMMDD, and time is in
the form HHmmss (for example, ECGTCheck-20150423-223843.txt). The check-file will be
written as a UTF-8 file (with a BOM signature), unless the file characters are all a subset

of the Windows-1252 character set, in which case the file will be written as a Windows-
1252 file.

BACKUP
This option creates a backup of the output file, if it exists, before being written to by the
ETAC Code Generator. If file.ext is the format of the output file name, then the backup file
name will be file~backup.ext. If the backup file already exists then it will be overwritten
automatically without warning.

IGNORE_BAD SYMB
This option ignores special symbols that are undefined or invalid. If this option is absent,
undefined special symbols will have the text «***undefined***) appended to them, and
invalid special symbols will have the text «***invalid***) appended to them. For
example, an undefined special symbol, <FRUIT>, will be replaced with
<FRUIT***undefined***>, If this option is present, the said text is not appended.

An undefined special symbol is one that has the correct format, but does not exist in the list
of special symbol definitions. An invalid special symbol is one that is defined, but is used
in an inappropriate context.

@T=ka-template [required]
ka-template is a keyword template composed of keywords and their arguments as defined in
Appendix A: Keyword-arguments Specifications of the document “The Official ETAC
Programming Language”, ETACProgLang(Official).pdf.

The keyword template is used to allow the user to specify how the template arguments are
parsed so that they can be substituted in for the special symbols within the template file. An
example of such a keyword template is:

@T={//CLASS= (#class-name, #class—-init)}
{//SUBCLASS= (#subclass-name, #subclass-init, #field-name, #field-type, ?) }

The example above consists of two ‘template blocks’, each of which is enclosed within a pair
of braces. Although not shown in the example, there can be more than one keyword within a
template block. The two keywords in the example are «CLASS=> and «<SUBCLASS=); the
lowercase strings represent the arguments of the keywords.

ka-template can contain groups nested template blocks to any desired level. The nested
template blocks syntactically follow the main template blocks and exist within a ‘keyword
block’ of the following form:

[Ws--1block-label : [Vs-] [template-block--][Vs-]

An example of a nested keyword template is:

@T={/Keywordl= (#A, #B) } {/Keyword2= (#KWl:blockl)} {/Keyword3: (#block2,?)}
KW1:[{KW1l} {/KW1KW=(#C,#D)}] Keyword3: [{Keyword3KW= (#E, #F, ?) }]

The example above consists of three template blocks (comprising the main part of the keyword
template) on the first line, followed by two keyword blocks on the second line. The first
keyword block contains two template blocks, and the second keyword block contains only one
template block.

Given that the full specification of a keyword template is intricate, it will not be presented in
this document. Suffice it to say that nested template blocks are rarely used except in the most
complex systems of producing generated files from multiple template files.

@P=symbol-names [required]
symbol-names specifies a mapping between the special symbol names existing in the template
file, and the user-supplied template arguments for the keyword template indicated at the «@T=»
keyword.

The syntax for symbol-names is as follows:

(Symb_namews...(tb_numws...arg_numWS".)... ; [Ws...])...

where symb-name is a special symbol name (alphanumeric-underscore characters beginning
with an alphabetic character), th-num is a template block number, and arg-num is the argument
number within that template block. tb-num and arg-num, together, are effectively an index
into the keyword template (indicated at <@T=»). Only UCS-2 (BMP Unicode scalar value)
characters are recognised in symb-name.

The template block number (¢b-num) is the block number, beginning with 1 (one), of the
template block, within the keyword template, that corresponds to the special symbol name.

The argument number (arg-num), beginning with 1 (one), indicates the position of the user-
specified argument (existing within the template arguments), indicated within the template
block, to replace the special symbol name in the template lines. An argument number of 0
(zero) indicates the keyword name itself of the template block.

There may be more than one pair of th-num and arg-num to access nested template blocks.
Each pair refers to the next level of the nested structure.

An example of symbol-names corresponding with the first example, above, shown at «@T=) is:

@P=CLASS NAME 1 1; CLASS INIT 1 2; SUBCLASS NAME 2 1; SUBCLASS INIT 2 2;
FIELD NAME 2 3; FIELD TYPE 2 4;

In the example above, CLASS INIT is the name of a special symbol existing within the
template file. During processing of the template file, that special symbol (<CLASS INIT>)
will be replaced by (typically) a user-supplied argument matching the keyword template
specified at <@T=) (see the first example at <@T=> above). The th-num, 1, refers to the first
template block of the keyword template (ie: <{//CLASS= (#class—-name, #class-init) }»),
and the arg-num, 2, refers to the second argument of that template block (indicated by
(fclass—-inity). Note that the special symbol name could be completely different from the
corresponding argument name in the template block (in this example, the special symbol name,
CLASS INIT, is different from the argument name, class-init). In addition, note that, for
example, if arg-num were 0 instead of 2, then the special symbol, <CLASS INIT>, would have
been replaced by the keyword name itself, «<CLASS=>. Special symbol names are case-
sensitive.

As mentioned above, there can be additional pairs of th-num and arg-num for a given symb-
name, indicating nested template blocks. Referring to the second example shown at «@T=»
above, to refer to «#2>, we have «@P=...A 1 1;...» asusual. To refer to <#D> we have «@P=...D
21 2 2;..0. Torefer to <#F> we have «@p=...F 3 1 1 2;...>. A whole block can be
referred to as well, for example, to refer to <#block2> we have «@P=...B2 3 1;....

2.1.2 Header Block Example

The following is an example of a header block.

QECG V1@

@General CPP source file template(@

@D=Template to generate the code necessary for a general C++ source file
and header file for a class structure.

@C="This template implements a C++ class.

Format: <CLASS= class-name, [base-class]> [WNDBASE\DLGBASE] [MEC BC]

Keyword:

CLASS Information relating to the class.

WNDBASE The base class is derived from CWnd or CCmdTarget.
DLGBASE The base class is derived from CDialog.

MFC BC base-class is an actual MFC class.

Symbol Names:

CLASS: -

class—-name Full name of the class.

base-class Full name of base class. (optional)
Example:

CLASS= abcTextWin

@O=Desktop::? [* Indicates to output the generated file to a uniquely
named file on the desktop if an output file is not specified in the input
arguments *]
@T={//CLASS=(#class-name, $ "base-class) } { /WNDBASE/DLGBASE} {/MFC_BC}

@P=CN 1 1; BC 1 2; WD 2 0; MB 3 0;

@endhead@

The invariant parts of the header block are shown as bold type. ETAC comments enclosed within
<[*>» and <*]» can be inserted among the /header block parameters, and are ignored. The special

symbols in the template lines are expressed as «(<CN>», «(<BC>), «<<WD>», and «<<MB>) (or variations
of those). Those special symbols are replaced by the arguments indicated at <@P=> when the
template lines are converted to generated lines. For example, if the user supplies the template
arguments, <CLASS=abcTextWin, Window DLGBASE», matching the keyword template at «QT=),
then the special symbols will have values as follows: «<CN>) will be replaced with abcTextWin,
«<<BC>) will be replaced with Window, «<WD>)> will be replaced with DLGBASE, and «<MB>> will be
replaced with nothing (an empty string). Because the argument to <«@C=» is enclosed within
double-quotes, that text will be displayed to the user via the ‘Details’ button of the input dialog
box.

For illustration, if the user supplies the template arguments «CLASS=abcTextWin, Window
DLGBASE>, template lines such as

<@JOIN: []1>

The main class is <CN> with base class "<BC>" and is <WD:L> based. <BC> is
<@IF: [COND=("<MB>" != "MFC BC")]>

not

<@END: [IF]>
based on MFC.
<Q@END: [JOIN]>

generate the single line «<The main class is abcTextWin with base class "Window"
and is dlgbase based. Window is not based on MFC.». Notice that special symbols
within quotes and commands are also replaced with their value.

The QIF command in the example above is evaluated as

<@IF:[COND=("" != "MFC BC")]>
not
<@END: [IF]>

before being processed; the condition «"" != "MFC BC"»is true, and so the text between the
@IF part and the QEND part (ie: the < not») is generated. If the condition were false, then the
text between the QIF part and the @REND part would not have been generated.

2.2 The Template Line Block

The template line block, which consists of text lines and template lines, follows immediately after
the header block (ie: the next line after the <dendhead@ line). When the output is generated, the
possibly modified template lines are written to the specified destinations (which could be other
sections of the remplate line block). Meta-codes modify template lines in various ways, as
described in the following sections, before being written.

A text line ending with (\ ', \ g, or \\'p> in a template line block is called a continued line.
The backslash (\) at the end of a continued line is called the line continuation character. A
series of continued lines, and the following text line, are treated as a single template line by the
ETAC Code Generator, but the /ine continuation characters are removed. The end-of-line
characters remain. So when the resulting template line is converted to an output line, that output
line will retain the end-of-line characters. Thus more than one text line is produced but without
the line continuation characters. This feature is typically used with multi-lines to allow
sequential text lines in a template file to be treated as a single template line.

For example, the following text lines in a template line block,

This is one line\Clgk
and this is another one\CGl

and this is the final one.CRk

represents the single template line

This is one linefltand this is another oneflgtfand this is the final one.

The output line generated from that femplate line will contain the three text lines. Note that the
template line does not retain the final Cgls.

A template line is processed as follows (“character” means u-char character). Each ordinary
character (an ordinary character is a character that is not part of a meta-code), in turn, operates as
an instruction to insert that character before the output point of the output line. Special symbols
and instructions perform the operations that they are designed for as they are encountered in the
template line. An output point is an imaginary point that exists between characters or before the
first or after the last character in the output line. There can be only one output point in an output
line. The first position before any characters in an output line is output point zero. Qutput point
one exists after the first character (or before the second character), and so on for other output
points. For illustrative purposes only, an output point is shown as a vertical bar (|). An input
point is the same as for an output point but applies to the template line.

The following illustration shows how a template line is processed. «<...>) represents a special
symbol or instruction. Consider the following template line.

|This is a template<...> line.

The input point begins at position zero (before the first character, T), and then moves to position
one (after the first character). The character (T), existing before the new input point, is inserted
before the output point (which is also initially at position zero). The output line will therefore
have the character T alone, and its output point is after that character, as shown below.

T|

The input point then moves to the next position (after h) and the character before the input point
(the h) is inserted before the output point. The output line will therefore have the characters Th,
with the output point after the h.

Th|

The process is repeated for all characters until the opening angle bracket (<) is encountered. At
this point, the template line and its corresponding output line are shown below.

template: This is a template|<...> line.
output: This is a template|

The opening angle bracket and its corresponding closing bracket (>), along with the text in-
between, is a special symbol or instruction. The input point moves to the position just after the
closing bracket. That special symbol or instruction is then activated as specified. Ifitisa
special symbol then the value of that symbol is inserted before the output point; if it is an
instruction then the output line may be altered and the output point may be in a different position
than the next position. For example, if the instruction is to put the output point nine positions
back, then the template line and output line will be as shown below.

template: This is a template<...>| line.
output: This is a| template

The input point then moves to the position before the character 1 in 1ine and then before
subsequent characters, outputting the rest of the template line to subsequent positions before the
current output point. The result is shown below.

template: This is a template<...> line.|

output: This is a line.| template

In summary, ordinary characters in a template line are output as given, but special symbols output
their values, and instructions modify the output line and the position of the output point.

2.2.1 Special Symbols

Special symbols are always enclosed within angle brackets, < (U+003C) and > (U+003E). They
cannot contain embedded white-space. If the text enclosed within angle brackets is not of the
proper format for a special symbol then the angle brackets and the enclosed text is generated in
the output line as given. During the processing of a template line, special symbols are replaced
by specified arguments within the template arguments, or for command symbols, by the values of
those command symbols existing on the internal list of command symbols.

The syntax diagram for a special symbol is as follows.

Special Symbol Syntax Diagram

symbol-name; > /
1—» : = number; J]
< € @
(-b symbol-name,

L:ti:{hwnmeﬁj

where

symbol-name,

is a special symbol name as defined for the «@P=)> keyword. The special symbol is used with
nested template blocks and indicates the location of a template block, not the location of an
argument. For example, if <@P=ABC 2 1; DEF 0 3 1 2; GHI 4 9;) then the special
symbol «<<ABC/DEF/GHI/...>> indicates the template block at location2 1 0 3 1 2 4 9....
The effect of this example is the same as using the special symbol «<<XYZ/...>> with «@P=XYZ
2103124 9.

A special symbol name must begin with an alphabetic character, followed by zero or more
alphanumeric characters including underscores. Only UCS-2 (BMP Unicode scalar value)
characters are recognised.

number,
has two meanings:

(1) if used without a preceding hash character, “#’, it is an integer (positive, negative, or
zero) indicating by how much to add to the last index of symbol-name, or symbol-name, in
the «@P=> keyword. For example, if <@P=ABC 2 1; DEF 0 3 1 2; GHI 4 9;»then
(<<ABC:3/DEF/GHI:~-2/...> indicates the template block at location2 4 0 3 1 2 4 7
Notice that the last index of <ABC 2 1) has been increased by 3 (resulting in the index being
4), and the last index of «<GHI 4 9> has been decreased by 2 (resulting in the index being 7).
Note that the actual indexes of the symbols in «@P=) are not modified.

(2) if used with a preceding hash character, ‘#°, the template line in which the special symbol
exists is called a multi-line, meaning that it can generate more than one output line. number,
is a non-negative integer indicating that a line is to be generated for every increase of
number, of the last index of the corresponding symbol specified at <@P=», beginning with the

value of the last index. For example, if <@P=ABC 0 3 1 2;) then the special symbol

«<<ABC: #3>) indicates that a line is to be generated using the argument located at 0 3 1 2 of
the relevant template block, and another line is to be generated using the argument located at
0 3 1 5 ofthe same template block, and another line generated using the argument located
0 3 1 8 ofthe same template block, and so on until there are no more arguments for the
special symbol. Notice that the last index, shown in blue bold, has been incremented by 3 for
each generated line after the first one.

If all the number, that are preceded by “#’ of all special symbols in the same template line are
zero then only one line is generated. For example, the template line <This <ABC:#0> with
<DEF:#0> and <GHI:-4> generates one line) generates only one line because there is
a 0 (zero) following each “#’ character.

If more than one special symbol contains ‘#’ in the same femplate line, then the indexes
corresponding to all such special symbol increase simultaneously until the first index
increment fails to correspond to an argument. For example, assuming that there are eleven or
more arguments corresponding to the special symbol ABC, and six arguments corresponding to
DEF, then the template line <This <ABC:#5> with <DEF:#3> and <GHI:2> generates
two lines) generates only two output lines because the last index of DEF can only be
incremented once (resulting in an index of 4); any further increments of that index would put
it beyond the six available arguments. Also note that the last index of ARC is also
incremented once.

number, can also be used with a special symbol defined by the RSYMBOL command, or by the
@cgAddCmdSymb function.

symbol-name;

is a special symbol name as defined in the «@P=) keyword, by the @RSYMBOL command, or by
the @cgAddCmdSymb function. The special symbol may be used with nested template blocks.
It indicates the location of an argument corresponding to the relevant part of the template
block. For example, if <@P=ARC 2 1; DEF 0 3 1 2; GHI 4 9;)>then «<<ABC>) indicates
the argument corresponding to the keyword template located at index 2 1, and «<DEF>)
indicates the argument corresponding to the keyword template located at index 0 3 1 2.
The special symbol of symbol-name, is replaced by the possibly modified argument
corresponding to the specified index location. Note that this is the most typical use of a
special symbol.

A special symbol name must begin with an alphabetic character, followed by zero or more
alphanumeric characters including underscores. Only UCS-2 (BMP Unicode scalar value)
characters are recognised.

L

will put the argument in lower case before the special symbol is replaced.
U

will put the argument in upper case before the special symbol is replaced.
. (dot)

means the current line number (beginning with line number zero) of the line generated from a
multi-line. The current line number is multiplied by the (non-negative) number, that precedes
the dot, if number, is present. If number, and the preceding ‘#’ are absent, then the dot (.)
will represent the number zero. If °.” and ‘@’ are both absent, then the number ‘1’ is used
instead of the *.” and “@’.

The resulting number modifies the substitution argument corresponding to the special symbol,
as explained in subsequent paragraphs.

indicates an internal global counter corresponding to symbol-name,. The counter is initialised
with 0 (zero). It increases by one each time after a substitution involving the counter is
made. The counter is used in the same way as the dot (.). In a multi-line, the counter is
incremented for each generated line of the multi-line. If number, and the preceding “#° are
not present, then the counter will be incremented only once for all the generated lines of a
multi-line. If °.” and ‘@’ are both absent, then the number ‘1’ is used instead of the ‘.’ and
Q.

The resulting number modifies the substitution argument corresponding to the special symbol,
as explained in subsequent paragraphs.

number,

The plus and minus sign (‘+°, ‘=") before number, means to add (or subtract) the multiplied
(by number,) current line number (indicated by ‘.’) or symbol counter (indicated by ‘@") to
the argument substituted in for symbol-name, if the argument is all digit characters. If the
plus and minus signs and number, do not exist, then the argument is multiplied by the current
line number or symbol counter if the argument is all digit characters. If the argument
contains non-digit characters, then the (possibly) multiplied current line number or symbol
counter is converted to a string and appended to the argument before substitution. For
example, if NUM represents the three arguments 1 5 6 then (XXX<NUM: #1+2 . >XXX> produces
(XXXLXXXy, (XXXTXXX>, (XXX10XXX> because 2 x 0 is added to the first argument, 1, resulting
in 1, 2 x 1 is added to the second argument, 5, resulting in 7, and 2 % 2 is added to the final
argument, 6, resulting in 10. If VAL corresponds to the three arguments A B C then
(XXX<LVAL: #1 .>XXX)> produces (XXXAQXXX), (XXXB1XXX>, «<XXXC2XXX>. If SYM corresponds
to the argument A then «(X<SYM-1>X) produces «XA-1X»; with the argument 3 it would
produce «X2X>. The default for number, is 1 (one).

number;
is added or subtracted from the current line number (indicated by °.’) or symbol counter
(indicated by ‘@) before the result is multiplied by number,. The default for numbers is 1
(one) if the preceding ‘+’ or ‘~’ is present. For example, if NUM corresponds to the three
arguments 1 5 6 then (XXX<NUM: #1+.+2>XXX> produces (XXX3XXX», (XXX8XXX>,
(XXX10XXX> because 0 + 2 is added to the first argument, 1, resulting in 3, 1 + 2 is added to
the second argument, 5, resulting in 8, and 2 + 2 is added to the third argument, 6, resulting
in 10. If VAL corresponds to the three arguments A B C then (XXX<VAL: #1+.+>XXX>
produces «(XXXA1XXX), (XXXB2XXX), (XXXC3XXX> because <VAL:#1+.+> is equivalent to
<VAL:#1+.+1>.

The various parts of a special symbol can be understood as follows.

case: [L | U]

symbol-offset: [{0} | number|

factor: [{x1} | ((+ | =) [{1} | number:])]
count-type: [{1} | . | @]

count-bias: [{0} | ((+ | =) [{1} | numbers])]
number-part: factor x (count-type + count-bias)

A copy of the argument corresponding to symbol-name, is converted to upper-case before it
replaces the special symbol if case is U, or converted to lower-case if case is L. If the argument is
an integer, then a copy of it is modified by number-part, otherwise, if the argument is not an
integer, number-part is appended to the argument copy before it replaces the special symbol.

The following examples illustrate how this system operates. Note that the term “argument” in the
following examples means “argument copy”; the actual arguments are not modified. The special
symbol names are shown in bold purple, and the number-parts are shown in bold blue.

<NUM+>

number-part is: <+1 X (1 + 0)>. This is the same as +1, so, for the argument corresponding to
NUM, 1 is added to that argument if it is an integer, or appended to the argument if it is non-
integral. Note that the default values for count-type and count-bias are used in this example.

<ABC:5+2>

number-part is: <+2 X (1 + 0)>. This is the same as +2, so, for the fifth argument from the
one specified by ARC, 2 is added to that argument if it is an integer, or appended to the
argument if it is non-integral.

<K-@>
number-part is: <=1 x (@ + 0)». This is the same as <-@>, so, for the argument corresponding
to K, the negation of the current global counter for K is added to that argument if it is an
integer, or appended to the argument if it is non-integral. The global counter for K is
automatically increased by one after it is used.

<SYMB+.->

number-part is: <+1 x (. + =1)». This is the same as <+ (. — 1)), so, for the argument
corresponding to SYMB, the value of (. — 1) is added to that argument if it is an integer, or
appended to the argument if it is non-integral. Note that this special symbol, if alone on a
template line, is not a multi-line, so the value of . would be 0. The effective value of (. — 1)
would, in that case, be —1.

<num:3@>

number-part is: <x 1 x (@ + 0)». This is the same as «x @, so, for the third argument from the
one specified by num, the current value of @ multiplies an integral argument, or is appended
to a non-integral argument, where ‘@’ is the current global counter for num. The value of @ is
automatically increased by one after it is used.

<NAME : LQ-3>

number-part is: <x 1 x (@ — 3)». This is the same as «<x (@ - 3)), so, the argument
corresponding to NAME is multiplied by the difference of the current global counter for NAME
and 3 if that argument is an integer, or the resulting difference is appended to a lower-case
copy of the argument if it is non-integral. The global counter for NAME is automatically
increased by one after it is used.

<VAR:#1+2>

number-part is: <+2 X (1 + 0)>. This is the same as +2, so, for each argument, 2 is added to
an integral argument, or appended to a non-integral argument.

<LOG_NUM: #2-2.>

number-part is: <=2 x (. + 0)>. This is the same as <=2 x .», so, for each second argument
beginning with the first, the value of <=2 x .» is added to an integral argument, or appended
to a non-integral argument, where ‘.’ is the current line number beginning with line 0. The
values of <=2 x .) are: 0, -2, -4, etc. Note that for integral arguments, those arguments are
decreased (or remain the same), and for non-integral arguments, the values as shown
(including the negation sign) are appended to those arguments.

<Var7:#3.+2>

number-part is: << 1 x (. + 2)». This is the same as << (. + 2)), so, for each third argument
of Var7 beginning with the first, the value of (. + 2) multiplies an integral argument, or is

appended to a non-integral argument, where . is the current line number beginning with line
0. The values of (. + 2) are: 2, 3, 4, etc.

<NUM: #3+.+2>
number-part is: <+1 X (. + 2)>. This is the same as «+ (. + 2)», so, for each third of NUM
argument beginning with the first, the value of (. + 2) is added to an integral argument, or
appended to a non-integral argument, where ‘.’ is the current line number beginning with
line number 0. The values of (. + 2) are: 2, 3, 4, etc.

<field id:#4-5@+2>
number-part is: <=5 x (@ + 2)». So, for each fourth argument of field id beginning with
the first, the value of <=5 x (@ + 2)» is added to an integral argument, or appended to a non-
integral argument, where ‘@’ is the current global counter for field id. The global counter
for field id is automatically increased by one after each time it is used, for example, if the
current value of @ is 3, then the values of <=5 x (@ + 2)> would be: -25, =30, -35, etc.

2.2.2 Instructions
Instructions exist within a template line and are of the following form.

<&name: [Vs-] [[Ws-]arguments[Vs-]] >

Instructions can be placed anywhere within a template line unless otherwise stated, but they
cannot span more than one line. The ‘&’ (U+0026) is a symbol within the angle brackets
indicating that the angle brackets and the text within it is an instruction rather than a command.
name is the name of the instruction, and arguments is the keyword-arguments format of the
instruction’s arguments. Special symbols and &ENT (function) instructions can be present in
arguments unless specified otherwise; the special symbols in arguments get evaluated once first,
then the &FNT instructions get evaluated once. arguments can contain ETAC comments (outside
of double quotes), which are ignored.

The following is an example of a template line containing an instruction whose argument
involves a special symbol.

Ordinary line for output <&DEL: [CHARS=<NUM>]> with some characters
deleted.

In the example above, <NUM> is a special symbol. When that special symbol gets replaced with
its value (which must be a positive integer) then the instruction (shown in bold blue) performs the
specified number of back-space (ie: character deletion) operations as the output line is being
generated. If, for example, the value of <NUM> is 8 then the template line will be equivalent to

Ordinary line for output <&DEL: [CHARS=8]> with some characters deleted.

and the output line generated from that template line would be

Ordinary line for with some characters deleted.

Notice that the instruction is not produced in the output line, and that 8 characters before the

instruction were deleted, as specified by the instruction. Instructions are effectively removed
before they are activated, so they are not part of the template line text when activated. Other

instructions operate in a similar way.

2.2.3 Instruction Summary
The table below contains an alphabetical list of the instructions.

ECGL Instruction Summary

Instruction Description
& Deletes itself when activated.
&C Encloses an arbitrary comment in a template line block.
&DATE Replaces itself with the current date and time.
&DEL Backspaces the current output point with deletion.
&FNT Activates ETAC script whose return value replaces the instruction.
&HPAR Replaces itself with the specified header block parameter arguments.
&MT Moves the output point of the current output line a specified number of
character positions.
&OMIT Replaces itself with nothing on specified output lines of a multi-line,
otherwise it replaces itself with a specified string.
&sq Replaces itself with a single-quote character.
&dgq Replaces itself with a double-quote character.
&bs Replaces itself with a backslash character.
&n Replaces itself with a new-line (line feed) character.
&t Replaces itself with a horizontal tabulation character.
&v Replaces itself with a vertical tabulation character.
&b Replaces itself with a back-space character.
&r Replaces itself with a carriage return character.
&f Replaces itself with a form feed character.
&a Replaces itself with an alert character.
&U+ Replaces itself with a Unicode scalar value character.
&x Replaces itself with the specified hexadecimal character.
&eol Replaces itself with the end-of-line characters of the current file.
&lp Replaces itself with a left parenthesis character.
&rp Replaces itself with a right parenthesis character.
&lb Replaces itself with a left brace character.
&rb Replaces itself with a right brace character.
&ls Replaces itself with a left square bracket character.
&rs Replaces itself with a right square bracket character.
< Replaces itself with a less-than character.
> Replaces itself with a greater-than character.
&> Replaces itself with the enclosed meta-code.

2.2.4 Instruction Definitions

In the text that follows, the “current output point” (represented by a red bar: |) means the position
of the output point just before the specified instruction is activated.

The instructions are defined as follows. The examples are for illustrative purposes only.

|<&>

The void instruction simply deletes itself when activated, it is not produced in a generated
file. The instruction can exist anywhere in the template line block, and can be used after a
backslash at the end of a line so that the backslash is not interpreted as a line continuation

character. After this instruction is activated, the end of the line would be just a backslash
and not treated as part of the next line during further processing.

For example,
this is a line \<&>

converts to

this is a line \

The backslash is not a line continuation character since it was not originally at the end of
the template line. Note, however, that if the void instruction was a comment instruction
instead in the example above, then the backslash would be a /ine continuation character
because comment instructions are effectively removed before any processing begins.

A void instruction can be placed at the end of a femplate line containing trailing spaces to
prevent those spaces from being deleted by a text editor. For example, <this line will
retain the three trailing spaces®p®p%p<&>. A “trim trailing spaces” command
used in a text editor will retain the three trailing spaces, as will the ETAC Code Generator
(after removing the void instruction). ¢

<&C: [[(text)]1>

The &C (comment) instruction encloses an arbitrary comment in a template line block, and is
not produced in a generated file; comment instructions are effectively removed from the
template file before any processing begins. However, comment instructions within a
protection instruction are not removed. fext comprises the actual comment which can be
any text except the string <] >).

Comment instructions can exist anywhere outside other commands and instructions, and can
be nested. If a template line is empty (does not contain characters including spaces) after
the comment instructions on it have been removed, the line is deleted when the comment
instruction is processed.

Examples
BEFORE: <This is a line <&C:[(with a comment)]> in it»
AFTER: <(This i1s a line in it

BEFORE: (This is a line <&C:[(with a comment)]>]> in it
AFTER: <(This is a line]> in it

BEFORE: <This i1s a line <&C:[(with a <&C: [(comment)]>> in it
AFTER: <(This i1s a line 1in it

BEFORE: (This is a line <&<&C:[(with a protected comment)]>> in it
AFTER: (This is a line <&C:[(with a protected comment)]> in it»

Notice that in the last example, the comment instruction was not removed because it was
within a protection instruction. +

<&DATE: [| (date-format) | [UTC]]>

The &DATE instruction replaces itself with the current date and time in the specified form.
«[dd]/[MM]/ [yyyy]> is the default date-format if no format is specified (ie: <&DATE: []>).
UTC indicates that the date is in coordinated universal time, otherwise it is in local time.
Note that date-format must be enclosed within parentheses.

date-format can contain special symbols and &FNT instructions, which are activated prior to
this instruction being activated.

The following table shows the date symbols and their meaning within date-format. Other
symbols (eg: °/’) are presented as given. Where a single digit is specified, only leading
zero digits are suppressed; other non-zero digits are presented. For example, if the seconds
is 20, then «[s]»> will display 20; if the seconds is 3, then <[s]> will display 3, but <[ss]>»
will display 03. Alphabetic text should preferably exist outside this instruction.

DATE Formatting Characters

Desired Date and Time Format Symbol

Year (four digits, last two digits) lyyyyl, [yy]

Month (long name, short name, two digits, one digit) (MMMM], [MMM], [MM], [M]

Day (long name, short name, two digits, one digit) [dddd], [ddd], [dd], [d]

12 hour (two digits, one digit) [hh], [h]

24 hour (two digits, one digit) [HH], [H]

Minute (two digits, one digit) [mm], [m]

Second (two digits, one digit) [ss], [s]

Fraction of seconds (3 digits) [f]

AM/PM (2/P, AM/PM, a/p, am/pm) [T], [TT], [t], [tt]
Examples

BEFORE: (Today is <&DATE: []> <&DATE:[([HH]:[mm]:[ss])]>.»
AFTER: (Today is 20/05/2014 19:06:23.»

BEFORE: <(Today is <&DATE: [([ddd] [dd]-[M]-[yy] [h]:[mm]:[s].[f] [tt])]l>.
AFTER: <Today is Tue 20-5-14 7:06:23.592 pm.>

BEFORE: <It is <&DATE: [([dddd])]>, day <&DATE:[([d])]>, in the month of
<&DATE: [([MMMM])]>, in the year <&DATE: [([yyyyl)]> AD.»

BEFORE: <It is <&DATE: [([dddd], day [d], in the month of [MMMM], in the
year [yyyyl] AD.)]>

AFTER: <It i1s Tuesday, day 20, in the month of May, in the year 2014 AD.»

BEFORE: <Today 1s <&FNT: [=({QIfElse (("<CC>" = "USA") "<&DATE: [([MM]/[dd]/
[yy])]1>" "<&DATE: [([dd]/[MM]/[yy])]1>"):})1>0

BEFORE: <Today 1s <&DATE: [(<&FNT: [=({@IfElse(("<CC>" = "USA"™) "[MM]/[dd]/
[yy]l™ "[dd]/[MM]/ [yy]l™);})1>)1>0

AFTER: <Today is 05/20/14.»
AFTER: <Today is 20/05/14.»

Other Information

@cgDateTimeFormatted ¢

< &DEL : [CHARS=num-chars]>

The &DEL (delete) instruction backspaces the current output point a number (num-chars) of
times deleting characters as it backspaces. num-chars specifies how many u-char characters
to delete. num-chars is a non-negative integer.

Example
BEFORE: <This is a |<&DEL: [CHARS=6]> line»
AFTER: <«This line) ¢

<&FNT: [=(ETAC-script) 1>

The &FNT (function) instruction activates ETAC script (ETAC-script) whose return value is
converted to a string replacing the instruction. Conditional statements and variables can be
used in the script. The script runs in its own temporary local dictionary, and can access the
global cg data object. In addition, the inclusion file, TACGlobal.PTAC, and pre-processor
definitions for the fext array data object will have automatically been included. Note that
ETAC-script must be enclosed within parentheses.

After the ETAC script is activated, the top TAC stack object is removed and converted to a
string which replaces the whole instruction (ie: replaces <&FNT: [...]>); if the stack is
empty, or the top stack object is null (?), the whole instruction is deleted (ie: replaced with
nothing) or the whole line is deleted if the instruction exists alone on a line. If an error
occurs (for example, the top stack object cannot be converted to a string), the whole
instruction remains as is.

TAC custom commands and operators can be used within ETAC-script. Special symbols
within ETAC-script are replaced by their value before the script is executed, but &FNT
instructions within the script are pointless (they are not processed).

ETAC-script may be an ETAC procedure or operator expression. If it is enclosed within
braces or parentheses, then it is activated; otherwise it is automatically enclosed within
parentheses and activated. For example: (assume <MY ARG> has a value of MyVar)

BEFORE: <This is a line with <&FNT: [=({if ("MyVar" = "<MY ARG>") then
{ins_str 2 "_" "<MY ARG>[1]";} else {"<MY ARG>"} endif;})]> in it
INTERMEDIATE: <This is a line with <&FNT: [=({if ("MyVar" = "MyVar") then
{ins str 2 " " "MyVar[1l]";} else {"MyVar"} endif;})]> in it

AFTER: (This is a line with My Var[l] in ibt.

After the special symbols in the script have been replaced, the script is activated leaving the
string My Var[1] on the stack, which replaces the &FNT instruction.

Typically, the script merely consists of a function call. Functions are defined using the
@SCRIPT command. For example (assuming that MyETACFEFnt () is already defined with the
same script as in the previous example),

BEFORE: <This is a line with <&FNT: [=({MyETACFnt("<MY ARG>");})]> in it
AFTER: <This is a line with My Var[l] in it.

The following example activates a script expression.

BEFORE: <This is a line with <&FNT: [=(("<MY _ARG>" + "[1]"))]> in it
BEFORE: <This is a line with <&FNT: [=("<MY_ARG>" + "[1]")]> in ib
AFTER: <This is a line with MyVar[l] in it.

Note that for an expression, only its outer parentheses may be omitted as shown in the
example above.

Other Information
SCRIPT

<&HPAR: [VRSN | HEAD | FORM | ARGS | DESC | OUTF | OUTP | OUTN | GEND | SRCD | SETT |
TMPL | SIDX] >

The &HPAR (header parameters) instruction replaces itself with the specified header block
parameter arguments. The following table shows the meaning of the keywords in &HPAR.
The instruction replaces itself with the value of the red ellipsis in the following table.

Header Block Parameters

Kevyword Header Block Parameter Value

VRSN @ECG V...Q (the version of the ECGL used with the template file)
HEAD @...@ (the heading of the template file)

FORM The generated format based on the «@T=) argument.

ARGS The template arguments.

DESC @D=... (a short description of the template line block)

OUTF @O=... (the full path of the output file)*

OUTP @O=... (the full path of the output file excluding the file name and extension)®
OUTN @0=... (the file name and extension only of the output file)*

GEND The full directory path of the specified location of the generated files.
SRCD The full directory path of the location of the template files.

SETT @S=... (settings relating to the template file)

TMPL @T=... (keyword template)

SIDX @P=... (list of special symbol name indexes)

a If the current template file was evoked via the @GEN command with the INSERT option, then the
value will be an empty string. The output file path supplied by the user, if any, will override the
one at the «@0=> option.

Example
If the header block contains <@D=This file generates C codey, then:

BEFORE: <<&HPAR: [DESC]> which finds an element in an array.’
AFTER: <This file generates C code which finds an element in an array.»

Other Information
(@cgGetHeaderPar ¢

<8&MI: [(POSA=a-pos | POSR=r-pos) |[FILL= (fill-string)]| [SPACES=num-spaces|]>

The &MI (move insert) instruction moves the output point a specified number (a-pos) of
u-char character positions from the beginning of the current output line, or a specified
number (7-pos) of u-char character positions relative to the current output point of the
output line. It fills any missing characters between the last character of the output line and
the resulting position of the output point with the first character of a string (fill-string). The
first character of fi/l-string must be a UCS-2 (BMP Unicode scalar value) character. If no
character positions were filled, it puts the output point after the last printable character and
appends a number (num-spaces) of spaces.

a-pos is a non-negative integer; the point before the first character in the line is position 0
(zero). r-pos is an integer. num-spaces is a non-negative integer. If (FILL=) is absent, the
default for fill-string is a space character (U+0020).

The output point cannot be moved before position zero. If «<SPACES=) is omitted then the
rest of the line after the specified position of the output point is deleted.

A typical usage of the &MI instruction is to align variable names when generating a
programming language source file. For example, suppose that <TYPE1> has the value of
«unsigned inty, <TYPE2> has the value of 1ong, and <TYPE3> has the value of
MyVeryLongClassNameJustBecause. The following template lines would align the
variables at position 20, except for the long class name, which will have a space after it
before the variable name.

<TYPE1><&MI: [POSA=20 SPACES=1]>CountNum;
<TYPE2><&MI : [POSA=20 SPACES=1]>Len;
<TYPE3><&MI: [POSA=20 SPACES=1]>MyClass;

The output lines generated from the template lines above would be

unsigned int CountNum;
long Len;
MyVeryLongClassNameJustBecause MyClass;

The variable names of the top two lines are aligned at position 20 (specified by (POSA=20)),
but the last variable name, MyClass, is appended to the end of its variable type separated by
a space (specified by «<SPACES=1)).

Examples
In the examples that follow, the first line (at “BErorRE”™) represents the template line, the lines
following represent the output line.

BEFORE: «(This is a line|<&MI:[POSA=10 SPACES=2]>)
INTERMEDIATE: <This is a |line»

AFTER: <This is a line |

BEFORE: <to be continued|<&MI:[POSR=3 FILL=(.)]> later»
INTERMEDIATE: <to be continued...|

AFTER: <to be continued... later)

BEFORE: «unsigned int|<&MI:[POSA=20 FILL=(*)]>Var;>
INTERMEDIATE: <unsigned int*****xsx|,

AFTER: aunsigned int*****x***yar;|)

BEFORE: «unsigned int|<&MI:[POSR=0 SPACES=3]>Var;»
INTERMEDIATE: <unsigned int)

INTERMEDIATE: <unsigned int P>

AFTER: «unsigned int Var;)

BEFORE: «unsigned int|<&MI: [POSR=-3]>Var;>
INTERMEDIATE: <unsigned |int)

INTERMEDIATE: <unsigned |

AFTER: «unsigned Var;|»

In the last example, int was deleted because «SPACES=) was absent in the &MI instruction.
o

<§OMIT: [STR= (string) [FIRST | {LAST} | ENDS | NFIRST | NLAST | NENDS]]>

The &OMIT instruction replaces itself with nothing on the first (FIRST), last (LAST), first
and last (ENDS), all but the first (NFIRST), all but the last (NLAST), or all but the first and
last (NENDS) output line generated from a multi-line, otherwise it replaces itself with a string
(string). LAST is the default if the FIRST, LAST, ENDS, NFIRST, NLAST, and NENDS options
are absent.

Any special symbols or instructions in string are activated at the appropriate stage. Note
that &FNT instructions are processed at a later stage than the processing of the &OMIT
instructions. This instruction replaces itself with nothing if present on a non multi-line or a
single output line of a multi-line.

Example
Suppose that <FRUITS> has values apples, oranges, bananas. Then the following two
template lines,

I have some
<FRUITS:#1><&OMIT: [STR=(,)]1>

generate

I have some

apples,

oranges,

bananas

Used with the QIJOIN command, as follows,

<@JOIN: []>

I have some

<&OMIT: [STR=(and) NLAST]> <FRUITS:#1><&OMIT: [STR=(,)]1>
<@END: [JOIN] >

the ETAC Code Generator generates

I have some apples, oranges, and bananas.

Notice the full stop (.) before <@REND: [JOIN]>. +

| <&sq>

The &sqg (single quote: <"») instruction replaces itself with a single-quote character
(U+0027). +

| <&dg>

The &dg (double quote: <"») instruction replaces itself with a double-quote character
(U+0022). +

| <&bs>

The &bs (backslash: <\») instruction replaces itself with a backslash character (U+005C). «

|<&n>

The &n (new-line) instruction replaces itself with a new-line (line feed) character
(U+000A). «

<&t>

The &t (horizontal tabulation) instruction replaces itself with a horizontal tabulation
character (U+0009). «

| <&v>

The &v (vertical tabulation) instruction replaces itself with a vertical tabulation character
(U+000B). ¢

| <ab>

The &b (back-space) instruction replaces itself with a back-space character (U+0008). This
instruction is not to be confused with the &DEL instruction which deletes the previous
character. ¢

|<&r>

The &r (carriage return) instruction replaces itself with a carriage return character
(U+000D). «

|<&f>

The &f (form feed) instruction replaces itself with a form feed character (U+000C). ¢

|<&a>

The &a (alert) instruction replaces itself with an alert character (U+0007). ¢

<&U+h--h>

The &U+ (Unicode scalar value) instruction replaces itself with a Unicode scalar value
character <U+A--h>. h---h is from one to eight characters in the range ‘0’ to ‘9’ or ‘A’ to ‘F’
or ‘a’ to ‘f’, representing a Unicode character (scalar value) in hexadecimal notation
(U+h---h). For example, <&U+1F34F> replaces itself with the Unicode character U+1F34F
(the “Green Apple” character). /---h cannot be 0 (the NULL character). Note that 4/
cannot represent a surrogate code point or a value above U+10FFFF. For the single-byte
version of the ETAC Code Generator, a value of /---h greater than FFs will convert the
instruction to the question mark character “?°. ¢

<&xhh>

The &x (hex) instruction replaces itself with the character code 4h. hh is two characters in
the range ‘0’ to 9’ or ‘A’ to ‘F’ or ‘a’ to ‘f’, representing a Unicode character in
hexadecimal notation (U+0044). For example, <&x0C> replaces itself with the Unicode
character U+000C (the form feed character). /4 cannot be 00 (the NULL character). This
instruction is compatible with the single-byte version of the ETAC Code Generator. Note
that <&xhh> is the same as <&U+hh>. ¢

<&eol>

The s&eol (end of line) instruction replaces itself with the end-of-line (EOL) characters of
the current file. The EOL characters are typically <glp. ¢

| <&lp>

The &1p (left parenthesis: < (») instruction replaces itself with a left parenthesis character
(U+0028). +

| <&rp>

The &rp (right parenthesis: «)») instruction replaces itself with a right parenthesis character
(U+0029). +

| <&lb>

The &1b (left brace: <{») instruction replaces itself with a left brace (“left curly bracket™)
character (U+007B). ¢

<&rb>

The &rb (right brace: <}») instruction replaces itself with a right brace (“right curly
bracket”) character (U+007D). ¢

<&ls>

The &1s (left square bracket: < [») instruction replaces itself with a left square bracket
character (U+005B). ¢

<&rs>

The &rs (right square bracket: <]>) instruction replaces itself with a right square bracket
character (U+005D). ¢

|<&1t>

The &1t (less than: «<») instruction replaces itself with a less-than character (U+003C). ¢

| <agt>

The > (greater than: <) instruction replaces itself with a greater-than character
(U+003E).

< &<meta-code>>

This protection instruction replaces itself with the enclosed meta-code (meta-code)
including the surrounding angle brackets of that meta-code. The enclosed meta-code 1s not
processed as such (it is ‘protected’). This instruction can be placed anywhere within a
template line.

The instruction can be used to generate template files (ie: files containing meta-codes). For
example, the template line

This is <&<&DEL: [CHARS=2]>> a line

generates the output line
This is <&DEL: [CHARS=2]> a line

Effectively, the protection instruction has been removed, leaving the enclosed meta-code.

Special symbols and instructions are processed as usual if they exist within the command or
instruction that is directly enclosed by the protection instruction (such special symbols and
instructions are not protected). For example, the instruction (shown in text) in the
first line below is within the protection instruction, but it is not protected. The bold blue
text is protected.

BEFORE: (This is <&<&DEL: [CHARS= 1>> a line»
INTERMEDIATE: <This is <&<&DEL: [CHARS=3]>> a line
AFTER: (This is <&DEL: [CHARS=3]> a line»

The intermediate line above is generated internally after the &FNT instruction is activated.
The last line shows the output line after the protection instruction itself is activated. The
output line contains the actual instruction that was originally protected. Thus, the ETAC
Code Generator can use the protection instruction to generate template files and also
activate them.

A protection instruction can be nested. There are two kinds of nesting:

(1) A protection instruction is ‘tightly nested’ within another protection instruction if the
first said protection instruction is the only text enclosed. The protection instruction shown
in bold, in the following example, is tightly nested within another protection instruction:
<&<LEL. .. D>,

(2) A protection instruction is ‘loosely nested’ within another protection instruction if the
said protection instruction is enclosed within that other protection instruction but not tightly
nested. The protection instruction shown in bold, in the following example, is loosely
nested within another protection instruction: <&<&DEL: [CHARS=<&<...>>]>.

Protection instructions can be nested to any degree. When a protection instruction is
activated (the outer «<&> and «>) are effectively removed), all loosely nested protection
instructions (shown in bold in the following examples) are also activated.

Examples
BEFORE: (<&<&DEL: [CHARS=<&<&FNT: [=(...)]>>]>>
AFTER: <(<&DEL: [CHARS=<&FNT: [=(...)]>]1>

BEFORE: (<&<&<&DEL: [CHARS=<&Z&FNT: [=(...)]>>]>>>)
AFTER: <(<&<&DEL: [CHARS=<&ENT: [= (...)] >]1>>)

BEFORE: <<&<@DELETE: [...]>>
AFTER: <(<@DELETE: [...]>

The following example protects a command block.

<&<@OUTPUT: [PATH="MyFile.txt"]>>

I am un<&<&DEL: [CHARS=2]>>touchable.
I am un<&DEL: [CHARS=2]>touchable.
<&<QEND: [OUTPUT]>>

The output lines, after the protection instructions have been activated, are as follows

<@OUTPUT: [PATH="MyFile.txt"]>

I am un<&DEL: [CHARS=2]>touchable.
I am touchable.

<@END: [OUTPUT] >

Notice that the second last line was not protected, and so the &DEL instruction took effect. ¢

2.2.5 Commands

Commands exist within the template line block and are of the following two forms.

<@name :[Vs--]
[[Ys--]arguments[Vs--]]>
template-lines

<@END: [name] >

2 | <@name: [Vs-] [[Ws~]arguments[Vs-]] >

Commands can be placed anywhere within the template line block, but cannot exist on the same
logical line with text other than comment instructions or white space, unless stated otherwise. If
such text exists then the command is not recognised and is regarded as ordinary text. Parts of a
command can exist on subsequent lines; those lines are automatically concatenated as a single
logical line. Some commands can be nested within other commands of the same or different type,
as specified in the command definitions.

The ‘@ (U+0040) is a symbol within the angle brackets indicates that the angle brackets and the
text within it is a command rather than an instruction. name is the name of the command, and
arguments is the keyword-arguments format of the command’s arguments. arguments can contain
ETAC comments (outside of double quotes), which are ignored. template-lines indicates one or
more template lines. Commands are removed after being activated (unless otherwise stated), so
they are not themselves part of the output lines. Special symbols and &FNT (function)
instructions can be present in arguments unless specified otherwise; the special symbols get
evaluated once first, then the &FNT instructions get evaluated once.

The following is an example of part of a template line block containing a command whose
argument contains a special symbol.

<Q@OUTPUT: [PATH="C:\Files\<FILE>.txt" MARK=(//M1//)]1>
This line will be output,

and so will this line.

<QEND: [OUTPUT] >

In the example above, «<<FILE>) is a special symbol, and when that special symbol gets replaced
with its value (which must be a proper file name) then the command (shown in blue) inserts the
two lines (shown in black) to the specified output file beneath the text line containing <//M1//> in
that file. If, for example, the value of <FILE> is MyF1ile then the command lines will be
equivalent to:

<@OUTPUT: [PATH="C:\Files\MyFile.txt" MARK=(//M1//)]1>

This line will be output,

and so will this line.
<@END: [OUTPUT] >

And MyFile.txt will contain the two black lines beneath the text <//M1//> as shown below (the
<//M1//»> is already in the file MyFile.txt).

//M1//
This line will be output,
and so will this line.

2.2.6 Command Summary

The table below contains an alphabetical list of the commands.

ECGL Command Summary

Command Description

@cMT Encloses comments on any number of lines.

@DELETE Deletes all, the initial, or final text lines in a file matching a pattern string.

@DO_FOR Reproduces a block of template lines a specified number of times.

@DO_WITH Reproduces template lines for a subset of the values of a special symbol.

@EDIT Allows the programmer to edit template lines via ETAC script.

@END Indicates the end of a command block for certain commands.

@EVAL Does a number of additional levels of special symbol processing of
specified template lines.

@GEN Runs a new internal instance of the ETAC Code Generator.

QIF Selects template lines depending on boolean conditions.

@INSERT Inserts text lines immediately below itself.

@JOIN Concatenates consecutive femplate lines into a single template line.

@OUTPUT Inserts processed template lines into a text file relative to a marked place.

@POSTGEN Used to post-generate to a file from a given template file.

@REPROCESS Reprocesses specified template lines a number of specified times.

@SCRIPT Activates a block of ETAC script.

@SECTION Used to separate the femplate line block into separate sections for
processing.

@SYMBOL Adds a new special symbol and its values to the list of command symbols.

2.2.7 Command Definitions
The commands are defined as follows. The examples are for illustrative purposes only.

<@CMT: []>
comments
<@END: [CMT] >

The QCMT command encloses comments (comments) on any number of lines. A comment
command 1s deleted when activated, and not produced in the output file.

The following template lines contain a comment command.

AAAA

<Q@CMT: []1>

I am a comment.
And so am I!
<QEND: [CMT] >
BBEBB

The resulting output lines will be as follows.

AAAA
BBEB ¢

<@DELETE: [[PATH="file-path™| LINES=[P | S |E | A] (string) [(cust-pat) -] [FIRST]|
[LAST]]>

The @DELETE command deletes all, the initial, or final text lines in a file (file-path)
matching a pattern string (string). file-path can be a full or relative file path but must be

enclosed within double quotes. If «<PATH=) is absent, the output file path specified in the
header block (@0=out-path) or by the user is assumed. If the file specified by file-path does
not exist, or no line matches s#ring, then no action occurs and this command is removed.
string and cust-pat are pattern strings and have the same format as marker-string and cust-
pat (respectively) for the @QOUTPUT command.

If FIRST is present, the first lot of contiguous lines matching the pattern string are deleted.
If LAST is present, the last lot of contiguous lines matching the pattern string are deleted.
If both FIRST and LAST are absent, all lines matching the pattern string are deleted.

This command operates on an internal copy of the text in the specified file; that text is
written to the actual disk file just before the current ECG session ends.

Additional Information
OUTPUT o

<@DO: [FOR: [IDXNAME=index-name [START=start-val| [STEP=incr| [REPEAT=num-reps|]]>

template-lines
<QEND: [DO]>

The DO [FOR] command reproduces a block of template lines (template-lines) a specified
number of times (num-reps). Each reproduced block will have a specified index name
(index-name) replaced by an integer beginning with an initial value (start-val), and
incremented by a specified amount (incr).

start-val is an integer (default value is 0), incr is a positive integer (default value is 1), and
num-reps 1s a non-negative integer (default value is 1). Any of the values can be a non
multi-line special symbol or a &ENT instruction evaluating to the appropriate type of integer.

index-name is an alphanumeric name (beginning with an alphabetic character) which will
contain the next value specified by incr for each iteration. index-name will have an initial
value of start-val and is incremented with a value of incr after each iteration.

template-lines is reproduced num-reps number of times. The reproduced template-lines are
then reprocessed using simple symbol substitution (as in stage 6). Within template-lines,
index-name is used as «<%index-name>>. «<%index-name>> is replaced with its current value,
and can be used anywhere an integral value is required (including in a special symbol) but is
ignored if it exists directly within a protection instruction (for example, ...<&<$Idx>>...,
remains as is).

The header of a @DO [FOR] command cannot be a multi-line. Non multi-line special symbols
and &FNT instructions for start-val, incr, and num-reps are activated prior to this command
being activated. @DO [FOR] commands can be nested, but the nested commands must not
have the same index-name.

In the following example, suppose that the special symbol <S1> has values Tom, Mick,
Mary, Jane.

<@DO: [FOR: [IDXNAME=Idx REPEAT=4]]>
Hello <S1:<%Idx>>,

<@IF: [COND= (<%Idx> = 0)]>

You have no apples to eat.

<@ELSE: [COND= (<%Idx> = 1)]>

You have <%$Idx> apple to eat.
<UELSE: []>

You have <%$Idx> apples to eat.
<W@END: [IF]>

<QEND: [DO]>

When the @DO [FOR] command is activated, the eight template lines will be internally
duplicated and modified so that there will be four lots of those eight lines (because of
REPEAT=4). For each duplication, the index name <%Idx> will be replaced with its current
value. The intermediate stage of the @DO [FOR] command, above, with the index name
replaced by its values is:

Hello <S1:0>,
<@IF:[COND=(0 = 0)]1>

You have no apples to eat.
<@ELSE: [COND=(0 = 1) 1>
You have 0 apple to eat.
<@ELSE: []>

You have 0 apples to eat.
<@END: [IF]>

Hello <S1:1>,
<@IF:[COND=(1 = 0) 1>

You have no apples to eat.
<@ELSE: [COND=(1 = 1)]>
You have 1 apple to eat.
<UELSE: []>

You have 1 apples to eat.
<W@END: [IF]>

Hello <S1:2>,
<@IF:[COND=(2 = 0)]>

You have no apples to eat.
<@ELSE: [COND=(2 = 1)]>
You have 2 apple to eat.
<@ELSE: []>

You have 2 apples to eat.
<@END: [IF]>

Hello <S1:3>,
<@IF:[COND=(3 = 0)]1>

You have no apples to eat.
<@ELSE: [COND=(3 = 1) 1>
You have 3 apple to eat.
<@ELSE: []>

You have 3 apples to eat.
<@END: [IF]>

In the final stage, the special symbols are replaced by their values, and the QIF commands
are activated. The resulting output lines are shown below.

Hello Tom,

You have no apples to eat.
Hello Mick,

You have 1 apple to eat.
Hello Mary,

You have 2 apples to eat.
Hello Jane,

You have 3 apples to eat.

The ETAC Code Generator does actually internally produce modified duplicates of
template-lines — meta-codes are duplicated along with those lines.

The @DO [FOR] command can be combined with the @DO [WITH] command as shown in the
following syntax.

<@DO: [FOR: [...] WITH:([...]), =1>

template-lines
<QEND: [DO]>

template-lines is reproduced the minimum of the number of times they would be reproduced
with the FOR or WITH options alone. For example, if template-lines would be reproduced six
times with the FOR option alone, and four times with the WITH option alone, then they will
be reproduced four times because this is the minimum of six and four.

Other Information

@DO_WITH +

<@DO: [WITH:([IDXNAME=index-name |[STEP=incr| SNAME=symbol-namel), 1>

template-lines
<QEND: [DO] >

The @DO [WITH] command reproduces template lines (template-lines) for a subset of all the
values of a special symbol (symbol-name) using an index name (index-name) for the last
index of those values. Note that there may be more than one WITH block in this command.

incr 1s a non-negative integer or a non multi-line special symbol or a &ENT instruction
evaluating to a non-negative integer (default value is 1).

index-name 1is an alphanumeric name (beginning with an alphabetic character) which will
represent the incremented value specified by incr for each iteration. index-name will
initially represent a value of zero, and that value is incremented by the value of incr after
each iteration. The values of all index-names are incremented simultaneously. index-name
can exist in any special symbol within template-lines but only as number, (without the ‘#’
prefix) in the special symbol syntax diagram. If index-name exists anywhere else within
template-lines, the consequence is undefined. For each iteration of the @DO [WITH]
command, index-name is replaced by its current represented value. Note that index-name is
not an ETAC variable.

symbol-name must evaluate to a restricted special symbol format as follows,

[([:(|)1/)+] [:(|)]
where is in the format of a special symbol name (alphanumeric string beginning with
an alphabetic character); is an integer (usually positive); and, is an index

name (index-name) of any outer @DO [WITH] command (this cannot be index-name at
«(IDXNAME=) of the current command). is number, as defined in the special symbol

syntax diagram. Note that symbol-name is internally used as an actual special symbol to
determine the number of iterations, and so must be appropriately pre-defined as usual.
The number of iterations is the number of values remaining at and after the specified value
position (|) corresponding to the special symbol () in the «@P=)
keyword or the special symbol () defined via the @RSYMBOL command or the
@cgAddCmdSymb function. If < | » is absent, then effectively has
the value of zero.

An example of symbol-name is (FNT NAME/CMD:Idx/SUBCMD:3/CMD TYPE). In this
example, Idx is the index-name of any outer @DO [WITH] command.

template-lines is reproduced a number of times which is the minimum of the number of
iterations of all the symbol names (symbol-name) specified in all the WITH blocks of the
same @DO [WITH] command. The reproduced template-lines are then reprocessed using
simple symbol substitution (as is done in stage 6).

Within template-lines, index-name is used as

<[([:(\)]/)] [:(L|U)]:index-name[(+ | —)[number,]]>
__ OR —
<[([:(\)1/)] rindex-name| / [:number,]]-

/ [:(L|U)][: number][(+ | —)[number,]]>

and is processed as a special symbol. , , and are as defined above.
number, is as defined in the special symbol syntax diagram. index-name and number,
represent the number, as defined in the special symbol syntax diagram.

For example, if index-name is Index, an illustration of the first format is
<FNT NAME/CMD:Idx/SUBCMD:3/CMD TYPE:L:Index>

and an 1llustration of the second format is
<FNT NAME/CMD:Idx/SUBCMD:3/CMD TYPE:Index/ENTRY:5/SECT/INPAR+1>

The header of a @DO command cannot be a multi-line. Non multi-line special symbols and
&FNT instructions for index-name, incr, and symbol-name are activated prior to this
command being activated. @DO [WITH] commands can be nested, but the nested commands
must not have the same index-name.

Note that the <(WITH:([...]), - syntax can be equivalently written as «(WITH: [...]) .
For example, <<@DO: [WITH: [IDXNAME=Idx SNAME=S1], [IDXNAME=J STEP=2
SNAME=S2]]>> and <<@DO: [WITH: [IDXNAME=Idx SNAME=S1] WITH: [IDXNAME=J
STEP=2 SNAME=S2]]>) are equivalent (the difference is that the <, > is replaced with

<« WITH:).

In the following example, suppose that the special symbol <S1> has the values Tom, Mick,
Jane; and <S2> has the values 4, 7, 2, 10, 5, 3, 8.

<@DO: [WITH: [IDXNAME=Idx SNAME=S1] WITH: [IDXNAME=J STEP=2 SNAME=S2]]>
Hello <S1:Idx>,

You have <S2:J> apples to eat.

<@END: [DO] >

When the @DO [WITH] command is activated, the two template lines will be internally
duplicated and modified so that there will be three lots of those two lines. For each
duplication, the index names Idx and J will be replaced with their current values. Idx

indicates an index into each value of S1 (because STEP=1, by default); J indicates an index
into every second value of S2 (because STEP=2). The value of Idx cannot be greater than 3
since there are only three values of S1, therefore the two femplate lines can only be
reproduced three times. The intermediate step of the @DO [WITH] command, above, with the
two index names replaced by their values is:

Hello <S1:0>,
You have <S2:0> apples to eat.
Hello <S1:1>,
You have <S2:2> apples to eat.
Hello <S1:2>,
You have <S2:4> apples to eat.

In the final step, the special symbols are replaced by their values. The resulting output lines
are shown below.

Hello Tom,

You have 4 apples to eat.
Hello Mick,

You have 2 apples to eat.
Hello Jane,

You have 5 apples to eat.

The @DO [WITH] command is effectively an elaborate version of a multi-line applied to
more than one template line. In a simple case, however, it is more efficient and readable to
use a multi-line rather than a @DO [WITH] command, as illustrated in the following example.

Hello <S1:#1>,\
You have <S2:#2> apples to eat.

You will notice that the two femplate lines above generate the same text as in the preceding
example (assuming the same values for <S1> and <S2> as previously defined). It is only in
more complex cases that the @DO [WITH] command needs to be used.

The ETAC Code Generator does actually internally produce modified duplicates of
template-lines — meta-codes are duplicated along with those lines.

The @DO [WITH] command can be combined with the @DO [FOR] command as shown in the
following syntax.

<@DO: [FOR: [...] WITH:([...]), -=]>

template-lines
<Q@END: [DO] >

template-lines is reproduced the minimum of the number of times they would be reproduced
with the FOR or WITH options alone. For example, if template-lines would be reproduced six
times with the FOR option alone, and four times with the WITH option alone, then they will
be reproduced four times because that is the minimum of six and four.

Additional Information

Special Symbol Syntax Diagram

Other Information

@DO_FOR +

<Q@EDIT: [SCRIPT=(ETAC-script) 1>

template-lines
<@END: [EDIT]>

The QEDIT command allows the programmer to edit template lines (template-lines) via
ETAC script (ETAC-script). ETAC conditional statements and variables can be used in the
ETAC script as well as ETAC commands and operators. The script runs in its own local
dictionary, and can access the cg data object. In addition, the inclusion file, TACGlobal.PTAC,
and pre-processor definitions for the fext array data object will have automatically been
included. Note that ETAC-script must be enclosed within parentheses.

Before the ETAC script is activated, the top TAC stack object will be a text array data
object containing a duplicate of template-lines as an ETAC string sequence (accessed via
the tsaTextLines data member of the fext array data object). The script can then edit the
string sequence within the data object as desired, but must leave or replace the fext array
data object (containing the edited string sequence) on the stack. The edited string sequence
will then replace template-lines (and the REDIT command).

ETAC-script may be an ETAC procedure or just text script code. If it is enclosed within
braces then it is executed as a procedure; otherwise it is executed as a top-level script.
Typically, ETAC-script will be one or more ETAC function or procedure variables that have
been previously defined in a @RSCRIPT command.

This command can be nested. The inner level nested @EDIT commands are processed before
the outer level @EDIT commands.

The text array data object on the TAC stack is accessed by allocating it to a variable as
follows: «variable :-;> where variable is a programmer-defined variable. The ETAC string
sequence in the text array is then modified as desired via appropriate code, then the zext
array data object is pushed onto the stack by presenting its variable. For example,

. SCRIPT=(TAData :-; code; TAData;)...

code is the part of the ETAC script that modifies the text array in TAData via the

wariable .t1*> or the «@cg*> functions. Other ETAC commands and functions that operate
on a string sequence can be used with «ariable . tsaTextLines) (tsaTextLines is a
string sequence). After ETAC-script has finished executing, the contents of tsaTextLines
of the text array replaces template-lines (and the @QEDIT command).

The following example removes the duplicate template-lines, sorts the lines in ascending
alphabetical order, then reverses the order of those lines.

<@EDIT: [SCRIPT=({@cgDelDuplLines () ; QcgSortLines(); @cgRevLines();}) 1>

bool Rtnvall;
int RtnVal3;
bool Parl;
int Par2;
int RtnVal3;
char *Par3;
bool Parl;

<@END: [EDIT] >

The resulting output lines will be:

int RtnVal3;
int Par2;
char *Par3;
bool Rtnvall;
bool Parl;

The three «@cg*> functions in the script modify a text array data object which is on the TAC
stack.

Note that the braces in the «<SCRIPT=) keyword may be omitted as is done in the following
example. Also note that if the braces are omitted, the last semicolon may also be omitted.

This example indents the two template-lines with five asterisks.

<@EDIT: [SCRIPT=(TArr :-; TArr.tlIndentLines(5 "*"), TArr;)]>
What's up doc?

Nothing but the sky.

<W@END: [EDIT] >

The resulting output lines will be:

x*xWhat's up doc?
***x**Nothing but the sky.

The QEDIT command can also be used to enable the user to edit template-lines interactively.
This can be achieved by creating an ETAC function, via the @RSCRIPT command, to display a
dialog box showing femplate-lines for the user to edit. The function would return the edited
template lines on the stack. For example, if the said function is called EditLines, and
takes a text array data object as argument and return value, then the QEDIT command would
look like

<@EDIT: [SCRIPT= (EditLines())]>
Some lines for the user to edit.
The user will edit these lines.
<@END: [EDIT]>

The function EditLines will need to extract the string sequence from the fext array data
object for the user to edit, assigning the modified string sequence to the returned fext array
data object as follows.

EditLines :- fnt: (pTAData)

{
StrSeq :- pTAData.tsaTextLines;

[* ——insert code here to edit the text lines in StrSeq via a dialog box or text editor-— *]

pTAData.tsaTextLines := StrSeq;
pTAData; [*RETURNY*]
b7

Of course, the function above would include the details to create and display the dialog box,
or to display a text editor for the user to edit the template lines.

Other Information
SCRIPT o

<QEND: [CMT | DO | EDIT | EVAL | IF | JOIN | OUTPUT | REPROCESS | SCRIPT] >

The QEND command indicates the end of a command block for certain commands as
indicated by the keywords for this command. This command can only be used in
conjunction with the said command blocks. ¢

<Q@EVAL: [[COUNT=num-times| [PRIOR]|]>

template-lines
<@END: [EVAL] >

The QEVAL command does a number (num-times) of additional levels of special symbol
processing (stages 6 and 7) of the specified template lines (template-lines). num-times is a
non-negative integer, or a non multi-line special symbol or &ENT instruction that evaluates
to a non-negative integer. If «COUNT=) is absent, the default value of num-times is one.
Note that, regardless of the value of num-times, template-lines is processed as usual before
this command takes effect; num-times specifies the number of addition processing.

This command can be nested. The inner level nested @EVAL commands are processed before
the outer level @EVAL commands, and are re-processed by those outer level commands.

The header of an @EVAL command cannot be a multi-line.
The PRIOR option activates the REVAL command before the @DO commands are activated.

This command is useful for processing a special symbol whose value is another special
symbol. For example, suppose that the special symbol <FOOD> has the value <FRUIT>, and
that <FRUIT> has the value banana, then

<@EVAL:[]>
I have a <FOOD>
<@END: [EVAL]>

produces the output line

I have a banana

because <FOOD> evaluates to <FRUIT> in the normal processing of template lines, but
(COUNT=1) (the default) causes 1 (one) additional processing of <FRUIT>, resulting in
banana. Without the QREVAL command, the generated line would be <I have a <FRUIT>.

The @EVAL command is also useful for processing special symbols that themselves contain
special symbols. For example, suppose that <NUM> has the three values 1, 5, 6. And also
suppose that <MYSYMB> has the value NUM. Then

<@EVAL: [COUNT=1]>
XXX<<MYSYMB>: #1+42 . >XXX
<@END: [EVAL]>

generates

XXXIXXX
XXX TXXX
XXX10XXX

because in the normal processing of template lines, <<MYSYMB>: #1+2.> is not a valid
special symbol, but <MYSYMB> is, so the normal result is <NUM: #1+2.> after <MYSYMB> gets
replaced. However, this normal result is a valid special symbol, so the REVAL command
processes this special symbol, generating the three lines shown above.

Other Information
@WREPROCESS ¢

<@GEN: [INPUT="template-file" (OUTPUT="out-path" | INSERT) ARGS= (template-arguments)
[SRC_HEAD] [{NO PROMPT} | PROMPT]]>

The Q@GEN command runs a new internal instance of the ETAC Code Generator. template-
file is a file path of a remplate file. 1f template-file is a file name only, without a path and
extension, then it is assumed to exist in the default template files directory, and its extension
is assumed to be ‘ecgt’. If template-file is a relative path, then it is relative to the current
directory.

out-path specifies the output file path for template-file. If out-path is not an empty string, it
overrides the output file path specified (at <@0=>) in the header block of template-file. 1f
out-path is a relative path, then it is relative to the current directory. If out-path is an empty
string then the output file path specified in the header block of template-file takes affect.

Note that template-file and out-path must be enclosed within double quotes.

INSERT produces the default generated lines into the current template lines below where
this command is specified, rather than into an output file.

template-arguments is a string containing the template arguments used with the template
file specified in template-file. template-arguments must be enclosed within parentheses and
must conform to ka-template specified at the «@T=ka-template> parameter in the header
block as specified by the option SRC_HEAD.

SRC_HEAD indicates that the header block of the current template file in which this
command is specified takes effect, and template-file contains only the template line block
itself. If this keyword is absent, the header block of the specified template file takes effect.

PROMPT displays the user input dialog box of the ETAC Code Generator, containing
template-file, out-path, and template-arguments. NO PROMPT (the default) does not display
the dialog box.

Special symbols and &ENT instructions are activated prior to this command being activated.
This command is removed after being activated.

Other Information
@POSTGEN - @cgGenerate ¢

<@IF: [true | false | COND= (boolean-condition,) 1>
[template-lines; |

[<QELSE: [[{true} | false | COND= (boolean-condition,) |1>
[template-lines,]]

[<QELSE: [[{true} | false | COND= (boolean-condition,) |1>

[template-lines,]|
<QEND: [IF]>

The @IF command selects certain template lines (template-lines) depending on boolean
conditions (boolean-condition) ignoring other specified template lines. boolean-condition is
a boolean expression written in the ETAC™ programming language, and returns an integral
value. Note that boolean-condition is actually activated as ETAC script. If the returned
value is non-zero then it is regarded as true, otherwise the value is regarded as false.
boolean-condition cannot be a multi-line; non multi-line special symbols in boolean-
condition are pre-activated.

This command can be nested. The outer level nested @IF commands are processed before
the inner level QRIF commands.

The syntax for boolean-condition is the same as for ETAC-script of the &ENT instruction
with the exception that if boolean-condition does not return an integral value or the TAC
stack is empty then the whole QIF ... REND command remains as is given (no processing of
the command occurs). Note that boolean-condition must be enclosed within parentheses.

If «COND=) is absent, then whichever one is specified of ‘true’ or ‘false’ is interpreted as
the return value of the absent boolean-condition; ‘true’ is the default value. Any number
of @ELSE options can exist, or they can all be omitted.

template-lines is any number of template lines, and can include QIF command blocks and
other commands.

This command is processed as follows. Each boolean-condition is processed in turn
beginning with boolean-condition, to boolean-condition,, but for the first boolean-
condition; that returns true, template-lines; is retained and no other hoolean-condition is
activated. All other template-lines and the rest of the @QIF command block are internally
removed. Any existing QIF command blocks within template-lines, are then processed. If
each boolean-condition returns false then the whole @IF command block is removed and
no template-lines are retained.

An illustration of how the @IF command operates is shown below.

<QIF: [COND=(<VISIBLE> &and (<USER1> &or <USER2>))]1>

code,
<@ELSE: [COND= ("<COLR>"
code

<Q@ELSE: [COND=("<COLR>"
codes

<QELSE: []>

codey
<QEND: [IF]>

"rad")] >

"green") 1>

The special symbols are replaced as usual before the command is processed. For the first
one of the first three boolean-condition in the example above that returns true, the
corresponding code is retained, and the rest of the QIF command block, including each other
code, is removed. Notice that the hoolean-condition of the last @ELSE option is true by
default. If the first three boolean-condition all return false, then only codes is retained.

Also notice that, in this example, the first boolean-condition returns an integral value, but
each other boolean-condition returns a boolean value.

Additional Information
&FNT o

<@INSERT: [[PATH="file-path", |["src-path"|| [START=[P | S |E | A] (start-string) [(cust-

pat) -], [{first} | last | match-num,||] [OFFSET=offset| [END=[P | S |E | A] (end-
string) [(cust-pat) -], [{first} | last | match-num,]|] [ENDOFF=end-offset]
[SCRIPT=(ETAC-script) | [DEFER]]>

The QINSERT command inserts text lines immediately below itself. The inserted text lines
originally exist between specified lines (start-string, end-string) of either an external text
file (file-path) if «<PATH=) is present, or the current template lines if it is not. If DEFER is
absent, the processing of this command occurs before any substitutions are made in the
template lines, that is, before the first stage. If DEFER is present, processing occurs after
@IF command processing (at stage 11).

Special symbols and &ENT instructions are activated prior to this command being activated.
Note, however, that if the DEFER option is absent, this command is processed at the first
stage, and so no @SCRIPT commands would have yet been processed.

file-path specifies the file path to a text file and must be enclosed within double quotes. If
file-path is an empty string and «<SCRIPT=) is absent, or no text line in the text file matches
start-string or end-string (where specified), then this command is removed and no insertion
occurs. If the file specified by file-path does not exist, a new one is created. If src-path is
present, it must be enclosed within double quotes, and the created file will be a copy of the
file specified by src-path, otherwise the created file will be empty. If src-path is a relative
path, then it is relative to the directory containing the template files.

start-string specifies a ‘start line’, and end-string specifies an ‘end line’ within the text file
specified by file-path. The search for the end line begins from the line after the start line.
The text lines between the start line and end line (not inclusive) are inserted below this
command (which is removed); the content of the file specified by file-path is unaffected.
start-string and end-string with cust-pat can be pattern strings as described for the
@OUTPUT command. Note that start-string, end-string, and cust-pat must be enclosed within
parentheses.

If «<START=> is present, then first means that the first text string that matches start-string
in the text file is the start line, and 1ast means that the last matching text line is the start
line. match-num, could be a positive or negative integer. It determines which matched text
line is to be the start line, searching from the beginning of the file (if match-num, is
positive) or searching backwards from the end of the file (if match-num, is negative). A
value of zero for match-num, is invalid. For example, if match-num, is 3 then the third line
matching start-string, searching from the beginning of the text file, will be the start line.

If «<START=) is present, the <OFFSET=) option “moves” (redefines) the start line (specified by
start-string) offset lines from where it was found, placing it at another line which now
becomes the start line. offset is an integer. A positive value moves the original start line
down, and a negative value moves the original start line up. The default value of offset is
zero (the original start line is not moved and so it remains as specified by start-string). The
start line cannot be moved beyond an imaginary line before the first line or past the last line
in the text file.

If «<START=> is absent and «<OFFSET=) is present, then offsef indicates a line number of the
text file. The text line at that number will be the start line. A positive value of offset

indicates a line number from the beginning of the text file; the first line is line number 1
(one), the second line is line number 2, and so on. A negative value of offset indicates a
line number from the end of the text file; the last line is line number —1 and the second last
line is line number -2, and so on. If offset is zero, the start line is an imaginary line before
the first line of the text file.

If both «<START=) and <OFFSET=) are absent, then the start line is effectively an imaginary
line before the first line of the text file.

If <END=) is present, then first means that the first text line after the start line that matches
end-string in the text file is the end line, and 1ast means that the last matching text line
found after the start line is the end line. match-num, could be a positive or negative integer.
It determines which matched text line is to be the end line, searching from the line after the
start line (if match-num, is positive) or searching backwards from the end of the file (if
match-num, is negative). A value of zero for match-nums is invalid. For example, if match-
num, is 7 then the seventh line matching end-string, searching from the line after the start
line, will be the end line.

If <END=» is present, the <ENDOFF=) option logically “moves” (redefines) the end line
(specified by end-string) end-offset lines from where it was found, placing it at another line
which now becomes the end line. end-offset is an integer. A positive value moves the
original end line down, and a negative value moves the original end line up. The default
value of end-offset is zero (the original end line is not moved and so it remains as specified
by end-string). The end line cannot be moved beyond an imaginary line before the start
line or past the last line in the text file.

If <END=» is absent and (ENDOFF=) is present, then end-offset indicates a line number of the
text file. The text line at that number will be the end line. A positive value of end-offset
indicates a line number from the beginning of the start line; the first line after the start line
is line number 1 (one), the second line is line number 2, and so on. A negative value of
end-offset indicates a line number from the end of the text file; the last line is line number
-1 and the second last line is line number -2, and so on. If end-offset is zero, the end line
is an imaginary line after the last line of the text file.

If both <END=)> and <ENDOFF=» are absent, then the end line is an imaginary line after the last
line of the text file, so the text from the start line to the rest of the text file is inserted
beneath this command.

If «<SCRIPT=) is present, ETAC-script is activated just before the text lines are inserted.
ETAC-script has the same syntax and operates in the same manner as described in the

@EDIT command, except that the fext array data object will contain the text lines to be
inserted by this command. 1f file-path is an empty string, then the fext array data object will
initially be empty but may be filled by ETAC-script. This allows ETAC script to insert text
lines into the current template lines. Note that ETAC-script must be enclosed within
parentheses.

If the file specified by file-path contains template lines with commands that are spread over
more than one line, then the @QegCvtTmplData function will need to be called at «<SCRIPT=»,
as shown in the following illustration.

<@INSERT: [PATH="Template.ecgt" ... SCRIPT=(@cgCvtTmplData())]>
Note that the QRINSERT command can be used to copy a section of the existing template lines

to the position below itself, possibly with modification. For example, the following
template lines

I am an ordinary line

I am special

An ordinary line here

Another one here

I too am special

I am not

<@INSERT: [START=(I am special) END=(I too am special) ENDOFF=1
SCRIPT=(TArr :-; TArr.tlIndentlLines(3 "+"),; TArr;)]>

Just another line here

results in the following output lines

I am an ordinary line

I am special

An ordinary line here
Another one here

I too am special

I am not

+++An ordinary line here
+++Another one here

+++I too am special

Just another line here

The bold text in the output lines above has been inserted by the QRINSERT command into (an
internal copy of) the original template lines because the keyword «<PATH=> was absent from
that command. The end line is one line below the specified one at <END=> due to
<ENDOFF=1>. The command inserted the text lines between, but not including, the start line
and the end line. The ETAC script at <SCRIPT=> indented the lines with three “plus” (+)
characters before the insertion was made.

The command <«@INSERT: [PATH="file-path"]> inserts beneath itself the whole content of
the file specified by file-path before the existing template lines are processed.

Additional Information
@OUTPUT = @EDIT

Other Information
@cgCvtTmplData ¢

<@JOIN: []>

template-lines
<@END: [JOIN] >

The @JOIN command concatenates consecutive template lines (template-lines) into a single
template line without the end-of-line characters. This command can be nested; the inner
@JOIN commands are processed before the outer ones.

Example
Suppose that <FRUITS> has values apples, oranges, bananas. Then the following

<Q@JOIN: []1>

I have some

<&OMIT: [STR=(and) NLAST]> <FRUITS:#1><&OMIT: [STR=(,) 1>
. And I like them all.

<@END: [JOIN]>

produces the output line

I have some apples, oranges, and bananas. And I like them all.
.

<@OUTPUT: [[PATH="file-path", |["src-path"]| [MARK=[P | S |E | A| (marker-string) [(cust-
pat)-], [{first} | last | match-num]| [OFFSET=offset| [DELETE=num-lines |
DELETETO=([P | S | E | A] (end-string) [(cust-pat)--]| eof)] [ALIGN | ALIGNA | ALIGNB |
INDENT=num-spaces| [UPDATE| [BACKUP| [FLUSH]|]>

template-lines
<Q@END: [OUTPUT] >

The @QOUTPUT command inserts template lines (template-lines), after those lines have been
processed, into a (possibly existing) text file (file-path) before or after a line relative to a
marked place (marker-string) within that file, and possibly deleting a number of lines (num-
lines) after the marked place in the file first. Two pieces of information are needed for this:
the target file-path, and a marker-string (ie: a text line within the text file) indicating where
the processed template-lines are to be inserted.

If <PATH=) is specified, file-path can be a full or relative file path and must be enclosed
within double quotes. If file-path is a relative path, it is relative to the path specified on the
command line (GEN DIR=gen-dir) or input dialog box for the directory into which
generated files are to be put, or if no such directory is specified, then file-path is relative to
the current directory. If the file specified by file-path does not exist, a new one is created.
If src-path is present, it must be enclosed within double quotes, and the created file will be a
copy of the file specified by src-path, otherwise the created file will be empty. If src-path
is a relative path, then it is relative to the directory containing the template files. If file-
path is an empty string, a unique program-generated file name of the form
<(ECGOutput....txt>, where ... is an eight digit random number, will be created on the
Windows® Desktop, and used as file-path. file-path could specify a file that was already
generated by the ETAC Code Generator itself (typically via the @GEN command).

If «<PATH=> is absent, the output file path specified in the header block (at <@0O=out-path») or
by the user is assumed as file-path. In that case, the @QOUTPUT command and all the template
lines below it are ignored when this command is processed.

marker-string specifies a ‘marker’ within the text file specified by file-path. The search for
the marker is from the beginning of the text file. cust-pat is a custom pattern string that
may be used with marker-string. Note that marker-string and cust-pat must be enclosed
within parentheses.

marker-string and its qualifier have the following format (M is the marker-string, and T is
the current text line in the text file specified by file-path):

P (M) implies that M contains a pattern string. The match is for any part of 7.

S (M) implies that M contains a pattern string. The match is for the start (initial) part of 7.
E (M) implies that M contains a pattern string. The match is for the end part of 7.

A (M) implies that M contains a pattern string. The match is for all of 7.

(M) without the prefixes above implies that it is a plain string. The match is for all of 7.

If «(MARK=) is present, then first means that the first text string that matches marker-string
in the text file is the marker, and 1ast means that the last matching text string is the
marker. match-num could be a positive or negative integer. It determines which matched
text line is to be the marker, searching from the beginning of the text file (if match-num is
positive), or searching backwards from the end of the file (if match-num is negative). A
value of zero for match-num is invalid. For example, if match-num is 3 then the third line
matching marker-string, searching from the beginning of the text file, will be the marker.

If both (MARK=» and «<OFFSET=> are absent, or if a text line in the text file does not match
marker-string, then template-lines is appended to the text file specified by file-path.

If (MARK=) is present, the <OFFSET=> option “moves” (redefines) the marker (specified by
marker-string) offset lines from where it was found, placing it at another line which now
becomes the marker, and template-lines is inserted after that marker. offset is an integer. A
positive value moves the marker down, and a negative value moves the marker up. The
default value of offset is zero (the marker is not moved and so it remains as specified by
marker-string). The marker cannot be moved beyond an imaginary line before the first line
or past the last line in the text file. To insert code after the text line just above the marker,
specify -1 for offset.

If (MARK=) 1s absent and «OFFSET=) is present, then offsef indicates a line number of the text
file. A positive value of offsef indicates a line number from the beginning of the text file;
the first line is line number 1 (one), the second line is line number 2, and so on. A negative
value of offset indicates a line number from the end of the text file; the last line is line
number —1 and the second last line is line number -2, and so on. template-lines is inserted
before the specified line number, unless offset is zero, in which case template-lines is
appended to the text file.

The «<DELETE=) option deletes num-/ines text lines from the text file specified by file-path
before template-lines are inserted. num-lines is a positive integer or zero. The first line
deleted is at the position where the first insertion occurs. If text insertion occurs after the
last line of the file, then no lines are deleted because there would not be any lines after the
last line.

The «<DELETETO=)> option deletes the text lines from the first line after the marker up to, but
not including, the line specified by end-string before template-lines are inserted. end-string
specifies an ‘end line’ within the text file specified by file-path, and has the same format as
marker-string. The search for the end line begins from the line after the marker. 1f the end
line is not found then no lines are deleted. If eof is specified, then the rest of the text lines
in the text file are deleted. Note that end-string must be enclosed within parentheses.

The ALIGN option aligns template-lines with the first non-white space character of the text
line indicated by the marker. If that line is blank then this option is ignored.

The ALIGNA option aligns template-lines with the first non-white space character of the first
non-blank line after the line indicated by the marker. If no such line exists then this option
is ignored.

The ALIGNB option aligns template-lines with the first non-white space character of the
closest non-blank line before the line indicated by the marker. If no such line exists then
this option is ignored.

For ALIGN, ALIGNA, and ALIGNB, the fill characters to produce the alignment are spaces.

The «INDENT=) option indents each template line in template-lines with num-spaces space
characters just before the femplate line is ready to be output. num-spaces is a non-negative
integer.

The UPDATE option reloads the disk data of the text file specified by file-path into the ETAC
Code Generator before processing.

The BACKUP option creates a backup of the text file specified by file-path, if it exists, before
being written to by the ETAC Code Generator. If file.ext is the format of file name
specified in file-path, then the backup file name will be file~backup.ext. If the backup file
already exists then it will be overwritten automatically without warning. When the BACKUP
option is specified, the data to be written to the text file is internally marked as needing a
backup of the existing file data. When the backup file is created, the internal mark is
removed. If the text file is the output file, then this option is ignored.

The FLUSH option causes the accumulated data for the text file specified by file-path to be
written to the disk immediately after this command ends, rather than being written at the end
of the current ECG session. This is useful if an external program needs to access the output
data (typically via the @SCRIPT command) before the current ECG session ends. If the text
file is the output file, then this option is ignored.

All output data for which the FLUSH option was not specified is written to the appropriate
text files after all the template lines in the current ECG session have been processed.

The @OUTPUT command can be nested; the inner levels of the command are processed before
the outer levels. The command is deleted after being processed. If «<PATH=) is absent, all
template lines above the parent QOUTPUT command, and all template lines below the
beginning of the current QOUTPUT command are ignored as though they did not exist. If no
parent @OUTPUT command exists, then only the template lines below the beginning of the
current @QOUTPUT command and are ignored. Line number offsets and searching will be
relative to the remaining template lines.

The header of an QOUTPUT command cannot be a multi-line.

Examples
The following examples illustrate how the QOUTPUT command can be used.

<Q@QOUTPUT: []>
Nothing happened here.
<@END: [OUTPUT] >

The example above is not particularly useful because it merely replaces itself with the
template line (Nothing happened here.).

The following @OUTPUT command inserts variable declarations in a C programming
language header file, above a comment, <//«DECS»//», used especially for that purpose. It
is assumed that <FILE> has the value of the file path containing existing declarations,
<TYPE> has the values int, long, short, and <VAR> has the corresponding values MyVarl,
StrLen, Count.

<QOUTPUT: [PATH="<FILE>.h" MARK=(//«DECS»//) OFFSET=-1]>
<TYPE:#1><&MI: [POSA=20 SPACES=1]><VAR:#1>;
<@END: [OUTPUT] >

If the header file originally contained

bool FileExists;
//«DECS»//

then the command will insert the new declarations into the header file as shown below

bool FileExists;
int MyVarl;
long Strlen;
short Count;
//«DECS»//

Note that the «<OFFSET=-1) option causes the insertions to go above «//«DECS»//»; if that
«OFFSET=) option were absent, then the insertions would have gone beneath «//«DECS»//>.

The following example is based on the example above, and illustrates how the @OUTPUT
command can be used to update and maintain sections of any text file. The example
assumes the same values of <FILE>, <TYPE>, and <VAR> as in the preceding example. If
the header file contains

/ /«+DECS+»
bool FileExists;
//«=DECS—-»

then the following @OUTPUT command

<@OUTPUT: [PATH="<FILE>.h" MARK=(//«+DECS+») DELETETO=(//«-DECS-»)]>
<TYPE:#1><&MI: [POSA=20 SPACES=1]><VAR:#1>;
<@END: [OUTPUT] >

will replace the existing declarations in the header file with the new ones, thus

/ /«+DECS+»

int MyVarl;
long Strlen;
short Count;

//«=DECS—»
Notice the absence of the original declaration of FileExists.

The following example replaces the content of MyFile. txt after making a backup of it.
<W@OUTPUT: [PATH="MyFile. txt" BACKUP OFFSET=1 DELETETO=eof]>

<QEND: [OUTPUT] >

Additional Information

See Pattern String Matching under chapter 3 of the “The Official ETAC Programming
Language” document, ETACProgLang(Official).pdf. ¢

<@POSTGEN: [INPUT="template-file" OUTPUT="out-file" ARGS= (keyword-arguments)

[SRC_HEAD] [{NO PROMPT} | PROMPT]]>

The @POSTGEN command is used to post-generate to a file (out-file) from a given template
file (template-file). The command is executed as for the @GEN command but is processed
after the QOUTPUT commands have been executed.

out-path specifies the output file path for template-file. 1f out-file is an empty string, then
the output file will be the one specified (at «<@0=>) in the header block of template-file. If
out-file is a question mark (?) character, then the default generated lines from template-file
will be appended to the output file of the current template file. Otherwise the output file
will be the one specified at out-file, overriding the output file path specified in the header
block of template-file. 1f out-path is a relative path, then it is relative to the current
directory. Note that template-file and out-file must be enclosed within double quotes (even
when out-file is a question mark character).

The other keywords and arguments are as described under the @GEN command.

Typically, the @POSTGEN commands are placed last in the template file. The command can
be used to generate from a template file that was produced by an QOUTPUT command.

Additional Information

@GEN

Other Information

ceGenerate ¢

<@REPROCESS: [[PASSES=num-levels| [POST]|]>

template-lines
<@END: [REPROCESS] >

The @REPROCESS command reprocesses specified template lines (template-lines) a number
(num-levels) of times. If POST is absent, the command reprocesses template-lines beginning
with the stage when the @RSYMBOL commands are activated up to the stage before the
@REPROCESS commands are activated (stages 4 to 17). If POST is present, the command
reprocesses template-lines through all stages up to, and including, the stage that the
@OUTPUT commands are activated (stages 1 to 24). This command cannot exist within an
@OUTPUT command if POST is specified.

num-levels 1s zero or a positive integer and specifies the number of times that template-lines
is reprocessed. If <PASSES=) is absent, the default value of num-levels is one. num-levels is
internally decremented by one each time template-lines is reprocessed. When num-levels is
or becomes zero, the command is removed and no further reprocessing of template-lines
occurs. Note that, regardless of the value of num-levels, template-lines is processed as usual
before this command takes effect; num-/levels specifies the number of addition processing.

The @REPROCESS command can be nested; the inner level nested @REPROCESS commands
are processed before the outer level @REPROCESS commands, and are re-processed by those
outer level commands.

The header of a @REPROCESS command cannot be a multi-line.

Other Information
EVAL

<@SCRIPT: [{ETAC} [PRIOR | POST]]>

ETAC-script
<@END: [SCRIPT]>

The @SCRIPT command activates ETAC script (ETAC-script). The ETAC script has a pre-
allocated local dictionary, which is deleted when that script ends. Variable allocations are
therefore private to the ETAC script within each @RSCRIPT command. However, global
variables and ETAC function definitions can be allocated within the cg data object (for
example: <cg. {MyGlobVar :- 10; MyGlobFnt :- fnt: (...){...};};>). Global
variables are accessible directly from any ETAC script in the template line block without
using the cg data object. If a local variable is identical to a global variable, and the global
variable is not accessed via cg (for example: cg.MyVar), then the local variable will be
accessed.

Various intricacies of the header block, template line block, and output file are available via
predefined global functions. Such functions begin with the prefix @cg (for example:
@cgGetSymbCount (...)). The standard ETAC library procedures are also available for use.
In addition, the inclusion file, TACGlobal.PTAC, and pre-processor definitions for the text
array data object will have automatically been included.

The PRIOR option activates the ETAC script before the @RSYMBOL commands are activated.

The POST option postpones the activation of the ETAC script until after the QOUTPUT
commands have been activated.

ETAC-script can contain special symbols, instructions, and commands that have been
processed at an earlier stage than the @SCRIPT commands; if the PRIOR option is present,
the ETAC-script can contain special symbols even though they are processed at a later stage.

ETAC-script is written in the ETAC™ programming language, which is a dictionary and
stack based interpreted script programming language (the same language in which the ETAC
Code Generator is implemented). The document ETACOverview.pdf contains an overview of
the ETAC programming language, while the document ETACProgLang(Official).pdf contains
the official definition of the language.

The @SCRIPT command is typically used to define global ETAC variables, functions, and
procedures for use by &ENT instructions, or the command can be used to do additional
processing such as user interaction or disk file data manipulation.

Examples
Assume that the special symbol <DAY> has the value today. The following template lines

<@SCRIPT:[]>
cg.
{
Message :- fnt: () {"Hello world, I'm joining you <DAY>";};
i
<@END: [SCRIPT]>
Important message: <&FNT:[=({Message();})]>!'!!

generates the output line

Important message: Hello world, I'm joining you today!!!

Note that the Message function is allocated within the cg data object for it to be available
globally. Also note that the call to the Message function does not require the cg data object
to be specified.

The following illustration shows how to assign values to a special symbol programmatically
(via @egAddCmdSymb) if necessary. Simple straight forward assignments can be done via
the @RSYMBOL command; more complicated assignments that cannot be done via the @SYMBOL
command can be done programmatically. Note that special symbol assignments usually
need to be done with the PRIOR option of the @RSCRIPT command for those symbols to be
available at later stages.

<@SCRIPT: [PRIOR]>

[* Assign symbols here. *]

@cgAddCmdSymb ("fruit" ["apples", "oranges", "bananas"]);
<@END: [SCRIPT]>
<@SCRIPT: []>
cg.Proc :— [* Allocate procedure to the 'cg' data object. *]
{

Fruits :- [* Allocate local variable within the procedure. *]

(
"<frult:#1>"<&OMIT: [STR=(,)]>

15

@cgFormatStr ("Which do you like best %1%, %2%, or %3%?" Fruits);
}z
<@END: [SCRIPT]>
<&FNT: [=({write con Proc;})]>

The template lines above will print the following text to the console window.

Which do you like best apples, oranges, or bananas?

Notice how the ETAC sequence, Fruits, has been created using a multi-line. The resulting
sequence is ["apples", "oranges", "bananas"].

Additional Information

See the documents “An Overview of ETAC” (ETACOverview.pdf) and “The Official ETAC
Programming Language” (ETACProgLang(Official).pdf).

Related Information

6_Programming the ETAC Code Generator * 8_EGCL Function Reference

Other Information
ENT o

| <@SECTION: []>

The @SECTION command is used to separate the template line block into separate sections,
each of which is fully processed in turn. However, the output file and, by default, all other
generated files are written to disk after the last section has been processed. The scope of all
commands within a section is limited to that section as though it were the only section in the
template line block. ETAC script variable definitions (within the cg data object) and
command symbols are not affected — they are defined for all subsequent sections.
@SECTION commands take effect as they are encountered — they are not subject to stages.

A template line block with no @SECTION commands is effectively a single section. A
@SECTION command may optionally be the first line of the template line block.

Example
The following example illustrates how the template line block is partitioned into three
sections of template lines.

@endhead@

<@SECTION: []> (optional)
template-lines, (section 1)
<@SECTION: []>

template-lines, (section 2)
<@SECTION: []>

template-lines; (section 3)
o

<@SYMBOL: [NAME="name" ARGS= (value), - [EVAL]]>

The @SYMBOL command creates a new special symbol (name) and its values (value), and
adds them to the list of command symbols. The special symbol can have more than one
value, and is used like any other special symbol.

name must be enclosed within double quotes, and consists of the proper special symbol
name syntax (alphanumeric-underscore characters beginning with an alphabetic character).
Only UCS-2 (BMP Unicode scalar value) characters are recognised.

value is interpreted literally and meta-codes within it are not evaluated unless EVAL is
present. Note that va/ue must be enclosed within parentheses.

If EVAL is present, then only special symbols within value are evaluated before the special
symbol name is created.

If more than one @SYMBOL command with the same name is encountered, each value of each
subsequent @SYMBOL command having the same name is added to the list of values for that
name. For example, the following three template lines

<@SYMBOL: [NAME="FRUIT" ARGS=(apples), (oranges), (bananas)]>
<@SYMBOL: [NAME="FRUIT" ARGS= (pears)]>
<@SYMBOL: [NAME="FRUIT" ARGS=(plums), (apricots)]>

are equivalent to the following femplate line.

<@SYMBOL: [NAME="FRUIT" ARGS=(apples), (oranges), (bananas), (pears),
(plums), (apricots)]>

Example
The following example shows how the @SYMBOL command can be used.

<@SYMBOL: [NAME="FRUIT" ARGS=(apples), (oranges), (bananas)]>
<@SYMBOL: [NAME="AMOUNT" ARGS=(5)]>
I have <AMOUNT+2.-1> <FRUIT:#1>.

Noting that the last line above is a multi-line, the preceding template lines produce the
following output lines.

I have 3 apples.
I have 5 oranges.
I have 7 bananas.

The special symbol, <AMOUNT+2 .~-1>, converts to the value of <5 + 2 X (¢ — 1)», where c is
the current output line number beginning with zero.

Other Information
@cgAddCmdSymb ¢

3

Processing Stages

The ETAC Code Generator uses a unique and sophisticated declarative template language to
produce generated lines. The meta-codes of that language are not processed in order from the top
of the template line block to the bottom in one pass. Rather, all the meta-codes of the same type
are processed in their own pass from top to bottom separately. Such a processing pass is called a
“stage”. There are about thirty stages in processing a template line block. Of course, stages for
which there are no corresponding meta-codes in the template file are skipped.

If the template line block is partitioned into sections as defined in the @RSECTION command, then
each section undergoes all the stages before the next section is processed. The sections are
processed separately in the order in which they occur in the femplate line block.

The following example illustrates the concept of activating the meta-codes in stages. The QIF
command is activated at stage 11, QEDIT at stage 23, QOUTPUT at stage 24, @POSTGEN at 26, and
@SCRIPT [POST] at 27. In the example below, the RIF command is activated first, resulting in
one of the two QOUTPUT command headers. Next, the two QEDIT commands are activated in the
given order, followed by the two QOUTPUT commands; the top @QOUTPUT command is activated
before the remaining second one. The QRPOSTGEN command is activated next, followed by the
@SCRIPT [POST] command. The numbers in parentheses indicate the order that the meta-codes
are activated.

<@OUTPUT: [PATH=...]> (4)
zéEND:[OUTPUT]>
<@SCRIPT: [POST]> (7)
:éEND:[SCRIPT]>

<@EDIT: [SCRIPT=(...)]> (2)
zéEND:[EDIT]>

<QIF:[...]> (1)

<@OUTPUT : [PATH="MyFilel.txt"]> (5)
<QELSE: []>

<QOUTPUT: [PATH="MyFile2.txt"]> (5)
<@END: [IF]>

<@END: [OUTPUT] >

<QEDIT: [SCRIPT=(...) 1> (3)
<QPOSTGEN: [...]> (6)

<@END: [EDIT] >

There are a few points to be aware of in the example above. The commands are not activated
from top to bottom as written. The @IF command only outputs one of the two headers for the
@OUTPUT command which is activated later. The script of the second QEDIT command can alter

the QRPOSTGEN command within, before that command is activated later. The @SCRIPT [POST]
command is activated last, even though it is near the top of the template line block.

The following section defines the stage at which each type of meta-code is activated.

3.1 Meta-code Processing Stages

There are a number of processing stages for the meta-codes of a template line block. The
instances of the various types of meta-codes are activated at different stages. A &FNT instruction
within a meta-code (where permitted) that is activated prior to stage 16, is activated when the
meta-code itself is activated unless the &FNT instruction is immediately inside a protection
instruction. Protected meta-codes are not activated while they are protected. A meta-code that is
not immediately inside a protection instruction is not protected.

The following table shows the stage numbers (SN) of the various meta-codes. A lower-numbered
stage is performed before a higher-numbered stage. At each stage, all the meta-code instances for
that stage in all the template lines (in the same section as defined by the @SECTION command) are
activated before the next stage commences. The table also indicates whether a meta-code can be
nested (Ns).

Meta-code Stage Numbers

Meta-code

2]
Z

Ns Comments

@QINSERT (no DEFER)
&C

QCMT

@SCRIPT [PRIOR]
@SYMBOL

Pre-activates special symbols and &FNT instructions.
Y

=

N | Pre-activates special symbols in the command’s body.
Pre-activates special symbols if EVAL is specified.

continued lines (...\)

special symbols (non multi-line)

special symbols (multi-line)

&OMIT

@SCRIPT (no POST or PRIOR)

@QEVAL [PRIOR]

@DO

@IF...@ELSE...@END[IF]

@INSERT [DEFER]

&DATE

&HPAR

@EVAL (no PRIOR)

@GEN

&ENT

<&>

\OOO\]\]O\UI-PUJI\)N>—‘|

Pre-activates &FNT instructions®.

—_
(=)

Pre-activates & FNT instructions®.

o | —
K<< Z|z

Pre-activates & ENT instructions.

o
Z

Pre-activates &FNT instructions.

—_— | —
B W
<

Pre-activates &FNT instructions®.

—
(9]

Pre-activates & ENT instructions.

—_ =
~N | N
z

@REPROCESS (no POST) 18 'Y | Reprocesses template lines from stage 4 to stage 17.

&sqg &dg &bs &n &t &v &b | 19
&r &f &a &U+ &x &eol

&lp &rp &1b &rb &ls &rs
&1t >

&MI 20 N
@JOIN 21 Y

Processing Stages

3.1 Meta-code Processing Stages 54

&DEL 22 N

@EDIT 23 Y

<&<L L >> 24 'Y | Activated with QOUTPUT command.

@OUTPUT 24 'Y @ Text lines containing EOLs are treated as separate lines.
@REPROCESS [POST] 25 'Y | Reprocesses template lines from stage 1 to stage 24.
@POSTGEN 26

@SCRIPT[POST] 27 |'N

@DELETE 28

<&<LL>> 29 1Y

a Applies only within the meta-code itself, not to the meta-code’s body.

“EOL” stands for “end-of-line character sequence”.

4

Input Dialog Box

The input dialog box allows the user to enter information for the ETAC Code Generator to create
generated files. The dialog box is displayed only if the PROMPT keyword is specified in the input
arguments of ETACCodeGen.btac, or in the @GEN or QRPOSTGEN commands. The initial fields
displayed in the dialog box are the ones specified in the command line or in the said commands.
The input dialog box can also be presented via the @cgShowNewDialog function from within a
template file.

The following section describes the components of the input dialog box.

4.1 Dialog Box Details

A user can enter or modify the ETAC Code Generator parameters (input arguments) through an
input dialog box for a particular code generating session (ECG session). The dialog box is
displayed by specifying PROMPT on the command line or when setting up a Windows® shortcut to
RUnETAC.exe, which activates the ETAC Code Generator (ETACCodeGen.btac). The dialog box can
also be displayed by specifying PROMPT for the QGEN and @POSTGEN commands.

For example, to display the input dialog box from a shortcut to RunETAC.exe, use

...\RUNETAC.exe NO EXIT MSG SCRIPTS="ETACCodeGen.btac" '... PROMPT ...'

To display the input dialog box from a shortcut to ETACCodeGen.btac, use
...\ETACCodeGen.btac '... PROMPT ...' NO EXIT MSG

Note: specify NO_EXIT MSG if the RunETAC exit message box is not required to be displayed.

The input dialog box appears as shown below (the field values are only for illustration).

Input Dialog Box for the ETAC Code Generator

ETAC Code Generator Input B -10]x]
_n "
g Input Parameter Entry for the ETAC Code GenerathJ/_QfEMPLATE* ArrayLoop. ngt)

Template File ||Amayloopecgt o— /
Output File | |MyArrayLoop.c ' OUTPUT="MyArrayLoop.c")

Output Folder ||GenFiles
Title: |Loops through elements of an:n,ay_\(GEN_DIR:"GenFlles ")

Descripton:
Template code to generate the code neces;m@ﬁﬂe@ (ﬁ‘om the header block)>
through elements of an array.

Keyword-argument Syntax: @D=description (from the header block))
<array-variable, array-element-variable,

SREYSISIEIENES o ‘(Automatically derived from @ T=ka-template)
Template Arguments: of the header block

MyArray, ArrayElm, double

o— —(ARGS: (MyArray, ArrayElm, double)>

SILENT (absent)
[~ Do not display dialog boxes during processing
Event Logging NO_LOG (absent)

= Write log entries to the default log folder
= Do not write log entries to a file
& Write log entries to a file on the Desktop
" Write log entries to the file below

[+ Display log entries to the console —

| Generate | Details Quit

The diagram above is an example of the input dialog box that is displayed when the following
command line is entered as the Target of a Windows® shortcut file (note that, in this example,
RunETAC.exe is assumed to exist in the same directory as the shortcut).

RUunETAC.exe SCRIPTS=ETACCodeGen.etac 'TEMPLATE="ArraylLoop.ecgt"
OUTPUT="MyArrayLoop.c" GEN DIR="GenFiles" ARGS=(MyArray, ArrayElm, double)
AUTOLOG SHOW LOG PROMPT'

The ‘Generate’ button generates the requested files, the ‘Details’ button shows the first comment at
«@C=) within the specified template file if the comment is enclosed within double quotes, and the
‘Quit’ button exits the ETAC Code Generator. The ‘?° button displays the command syntax for
the input arguments, and the ‘©’ button displays the copyright information.

The default log folder is the one specified at the <LogDir=/og-dir> parameter of the initialisation
file (ETACCodeGen.ini).

5

Operating the ETAC Code Generator

This chapter shows the various ways to execute the official implementation of the ETAC Code
Generator (which requires the pre-installed Run ETAC Scripts package). To execute the self-
contained executable implementation, see Appendix B: Self-contained ETAC Code Generator.

5.1 Command Line

The ETAC Code Generator can be run from either the MS-DOS®™ or Windows® environment. In
either case, a command line needs to be specified. From within Windows, the command line is
typically entered in a shortcut file to the ETAC Code Generator (ETACCodeGen.btac).

The current directory must be the directory containing ETACCodeGen.btac or ETACCodeGen.etac.

In the «<Start In> entry (the current directory) of the shortcut properties, enter the following:

ecg-path

In a <*.cmd> or ¢*.bat> file, enter the following to change the current directory before calling the
ETAC Code Generator.

cd /D "ecg-path"

In the Target entry of the shortcut properties, or in a <*.cmd> or <*.bat> file, enter the following:

"path\RunETAC.exe" NO EXIT MSG SCRIPTS="ETACCodeGen.btac" 'args'

Alternatively, if the ETAC™ programming language has been installed, the following can be
entered:

"ecg-path\ETACCodeGen.btac" 'args' NO EXIT MSG

where path is the directory path of the directory containing RunETAC.exe, ecg-path is the directory
path of the directory containing the ETAC Code Generator program (ETACCodeGen.btac or
ETACCodeGen.etac), and args represents the input arguments for the ETAC Code Generator. args
may be delimited by single or double quotes, which are ignored. Typically, however, args is
delimited by single quotes, and file paths within args are delimited by double quotes. This results
in the least interpretation problems of args. NO EXIT MSG can be specified to prevent the
RunETAC exit message box from being displayed.

The ETAC Code Generator command line input arguments specification (args) is defined as
follows.

Command Line Input Arguments

[[INI_DIR=ini-dir] TEMPLATE=tmpl-file (ARGS= (kw-args) | ARG FILE=arg-file)
[OUTPUT=0ut-file] [GEN DIR=gen-dir] [NO LOG | AUTOLOG | LOG=log-file] [PROMPT]
[SHOW LOG] [SILENT]]

If no input arguments are present, the copyright information and a description of the ETAC Code
Generator along with a summary of the input arguments format is presented in a dialog box. The
following keywords are case-sensitive.

INI_DIR=ini-dir
ini-dir is the full or relative directory path for the initialisation file (ETACCodeGen.ini) used by
the ETAC Code Generator. A relative path is relative to the current directory. ini-dir may be
delimited by single or double quotes, which are ignored. If this option is absent or the
initialisation file does not exist in the specified directory, ini-dir, then the ETAC Code
Generator will first search the current directory for the initialisation file, and if the file is not
found then the ETAC Code Generator will search the Windows directory. If the initialisation
file is not found, then the ETAC Code Generator will use default values for the initialisation
file parameters. (See 5.2 Initialisation File)

TEMPLATE=tmpl-file
tmpl-file is the full or relative file path of the femplate file used by the ETAC Code Generator
as the source file for generating the output file and other files. A relative path is relative to
the directory specified in the <ECGTSourceDir=tmpl-dir> parameter of the initialisation file
(ETACCodeGen.ini). If the initialisation file is not found, then the ETAC Code Generator will
use default values for the initialisation file parameters. ¢mpl-file may be delimited by single
or double quotes, which are ignored. A full stop (.) at the beginning of tmpl-file represents
the full path of the current directory. The file name in tmpl-file typically has an extension of
‘ecgt’. If the PROMPT keyword is specified, tmpl-file can be an empty string. (See
5.2 _Initialisation File)

ARGS=(kw-args)
kw-args 1is a string specifying the template arguments used by the ETAC Code Generator to
generate the output file and other files. kw-args must be enclosed within parentheses and
must conform to ka-template specified at the «@T=ka-template> parameter in the header block.

ARG _FILE=arg-file
arg-file is a single-quoted or double-quoted file path to a file containing the template
arguments used by the ETAC Code Generator to generate the output file and other files. A
relative path is relative to the current directory. The content of the file must conform to ka-
template specified at the «@T=ka-template> parameter in the header block.

OUTPUT=out-file
out-file is the full or relative file path for the output file generated by the ETAC Code
Generator. A relative path is relative to the current directory. out-file overrides the file
specified at the «@0=out-file> parameter in the header block. out-file may be delimited by
single or double quotes, which are ignored. If out-file is a single or double quoted empty
string, then the output file will be generated on the Windows® Desktop as a unique program-
generated file name of the form ECGOutput....txt>, where ... is an eight digit random number.
If this option is absent, the out-file specified at the <@O=out-file> parameter in the header
block of the template file specified at <TEMPLATE=) is assumed for out-file.

GEN_DIR=gen-dir
gen-dir is the full or relative directory path to contain the files (excluding the output file)
generated by the ETAC Code Generator. A relative path is relative to the current directory.
gen-dir applies only to the generated files that are specified as relative file paths of the
@OUTPUT commands within the template file. gen-dir may be delimited by single or double
quotes, which are ignored. If this option is absent, then the current directory will be assumed
for the value of gen-dir.

NO_LOG
If this option is present, then no log file will be produced.

AUTOLOG
If this option is present, then the log file produced by the ETAC Code Generator will be
written to the Windows® Desktop. The log file has the format (ECGLogFile-date.log>, where
date is of the form YYYYMMDD, and is the date that the ETAC Code Generator is executed (for

example, if the ETAC Code Generator is executed on the 23™ of April, 2015, then the log file
will be named «ECGLogFile-20150423.l0og>). Log outputs produced on the same day are
appended to the same log file. The log file will be written as a UTF-8 file (with a BOM
signature), unless the file characters are all a subset of the Windows-1252 character set, in
which case the file will be written as a Windows-1252 file. If the log file does not exist, then
a new one is created.

LOG=log-file
log-file is the full or relative file path to which log outputs (activity and error messages) are
written by the ETAC Code Generator. A relative path is relative to the current directory. If
log-file does not end with a forward-slash (/) or backslash (\), then it specifies the file path
of the log file. If the log file already exists, then the log outputs are appended to that file,
otherwise a new file is created. If log-file ends with a forward-slash (/) or backslash (\),
then it specifies a directory into which the log file is written. In this case, the log file has the
format <ECGLogFile-date.log>, where date is of the form YYYYMMDD, and is the date that the
ETAC Code Generator is executed (for example, if the ETAC Code Generator is executed on
the 23™ of April, 2015, then the log file will be named ECGLogFile-20150423.log>). Log
outputs produced on the same day are appended to the same log file. If all the log file
keywords (NO LOG, AUTOLOG, LOG=) are absent from the command line, then the directory
specified in the <LogDir=/og-dir> parameter of the initialisation file (ETACCodeGen.ini) will be
assumed as the directory path for the value of /og-file. In this case, the log output is written
to the dated log file as explained above. /og-file may be delimited by single or double quotes,
which are ignored. The log file will be written as a UTF-8 file (with a BOM signature),
unless the file characters are all a subset of the Windows-1252 character set, in which case
the file will be written as a Windows-1252 file. (See 5.2_Initialisation File)

Note that a backslash at the end of a quoted string needs to have a space following it,
otherwise the ending quote may not be regarded as a string delimiter.

PROMPT
If this option is present, then the ETAC Code Generator will display a dialog box for the user
to enter or modify the input arguments before generating the files. The initial input
arguments displayed in the dialog box are the ones set on the command line.

See chapter 4_Input Dialog Box for details.

SHOW_LOG
If this option is present, then log outputs (activity and error messages) produced by the ETAC
Code Generator are also displayed to the console window.

SILENT
If this option is present, then the ETAC Code Generator does not display dialog boxes other
than the input dialog box if the PROMPT option is present.

Examples
The text in the following examples is the input arguments for the ETAC Code Generator.
The current directory must be the directory containing ETACCodeGen.btac.

The following example is entered in a command prompt, the Target of a Windows® shortcut, or
a ¢*.cmd> or <*.bat> file. An input dialog box is presented for the user to type additional
arguments to the ETAC Code Generator.

"C:\...\RUnETAC.exe" SCRIPTS="ETACCodeGen.btac"

|l

The following example is the same as the preceding example but entered in the Target of a
Windows" shortcut to ETACCodeGen.btac.

"C:\...\ETACCodeGen.btac" '

In the following example, the PATH environment variable is assumed to include the directory
where RunETAC.exe is installed, and the current directory is assumed to be the directory containing
ETACCodeGen.btac. Two independent ECG sessions are run via the command processor (cmd.exe);
the second one runs after the first one has finished.

The first session generates files into the MyProject directory relative to the current directory.
The session uses the template file FindElement .ecgt existing in the directory specified in the
(ECGTSourceDir=tmpl-dir> parameter of the initialisation file (ETACCodeGen.ini) to generate
those files. FindElement.ecgt uses the template arguments <FUNCTION=Find, ,
pSearchVal, char * ARRAY=CustomerRec, CustName) as the parameters to generate the
files. The output file is ReadMe . txt generated into the current directory. Events are logged to a
dated file on the Windows® Desktop (AUTOLOG), and also to the console (SHOW LOG).

After the first ECG session has completed, the second session generates files into the
MyOtherProject directory relative to the current directory. It uses the template file
EventProcessing.ecgt existing in the current directory. The output file is
MyOtherProject.txt generated into the current directory. Before this session begins, however,
an input dialog box is displayed with the dialog box’s fields initialised as specified in the
command line input arguments (shown for the second session in blue below). The user can
change the value of those fields, and must enter the appropriate template arguments (under
Template Arguments in the input dialog box) for the EventProcessing.ecgt template file.
The template arguments in the dialog box is initialised with «CLASS=MyClass, mc
EVENT=MOUSE DOWN, ...> for the user to modify.

"RUnNETAC.exe" SCRIPTS="ETACodeGen.btac" '

"ETACodeGen.btac" '

5.2 Initialisation File

The ETAC Code Generator typically requires an INI file (initialisation file) which contains
information relevant to all ECG sessions. The INI file is named ETACCodeGen.ini. The format of
the content of the INI file 1s as follows.

[Settings]
ECGTSourceDir=tmpl-dir
LogDir=log-dir

ECGTSourceDir=tmpl-dir
tmpl-dir is the full or relative directory path of the directory containing the ETAC Code
Generator template files (*.ecgt). A relative path is relative to the current directory. tmpl-
dir may be delimited by single or double quotes, which are ignored. If this parameter is
absent, then the current directory will be assumed for the value of tmpl-dir.

LogDir=log-dir
ini-dir is the default full or relative directory path of the directory into which the log files
produced by the ETAC Code Generator will be written. A relative path is relative to the
current directory. Log files are written into this directory only if all the log file keywords
(NO LOG, AUTOLOG, LOG=) are absent from the input arguments, or if the log file is specified
to be written to the default log folder in the input dialog box. The log files have the format

(ECGLogFile-date.log>, where date is of the form YYYYMMDD (for example, if today is the 23™ of
April, 2015, then the log file will be named <ECGLogFile-20150423.l0g>). date is the date that
the ETAC Code Generator is executed. /og-dir may be delimited by single or double quotes,
which are ignored. If this parameter is absent, then the current directory will be assumed for
the value of log-dir.

The INI file can be specified on the ETAC Code Generator command line, or exists in the current
directory or Windows directory.

If the ETAC Code Generator does not find the INI file, then src-dir and log-dir will both be
assumed to have the value of the current directory.

5.3 Executing from ETAC Script

The ETAC Code Generator can be executed directly from ETAC script. The current directory
must be the directory containing ETACCodeGen.btac or ETACCodeGen.etac.

Important Note
Do not use exec tac to run the ETAC Code Generator — the consequence is unpredictable.

The following example illustrates how to execute the ETAC Code Generator from ETAC script
outside a template file. The second argument of fRUnETACFile () (shown in violet colour) is
only for illustration.

::define @F RUN ETAC FILE
::include "etacFunctions.etac"

RtnCode :- ?; Fnts :- @NewData ("etacFunctions");

RtnCode := Fnts.fRunETACFile ("ETACCodeGen.btac"
'TEMPLATE="". \Tmplt .ecgt" ARGS=(...) OUTPUT="C: \
...\GenFiles\MyGenFile.txt"");

if (RtnCode = :#TAC RTN SUCCESS:) then {...} endif;

The following example illustrates how to execute the ETAC Code Generator from ETAC script
inside a template file. The second argument of @cgRUNETACFile (shown in violet colour) is only
for illustration.

<@SCRIPT: []>
RtnCode :- ?;

RtnCode := Q@cgRunETACFile ("ETACCodeGen.btac" 'TEMPLATE=".\Tmplt.ecgt"
ARGS=(...) OUTPUT="C:\...\GenFiles\MyGenFile.txt""');

if (RtnCode = :#TAC RTN SUCCESS:) then {...} endif;

<Q@END: [SCRIPT]>

The second argument (shown in violet colour) of the function call in the two examples above is
the command line input arguments (see Command Line Input Arguments).

An ECG session can be executed from within a template file to produce the generated lines into
an ETAC sequence (OutSeq) as illustrated in the following example (the first argument of
@cgGenerate, shown in violet colour, is only for illustration).

<@SCRIPT: []>
]

OutSeq :- []; Success :— ?2;

Success := @cgGenerate (".\\Tmplt.ecgt" OutSeq "..." 2?2 0);
if Success then {...} endif;

<@END: [SCRIPT]>

Note the double backslash (\\) used in the file paths of the preceding examples. The double
backslash represents a single backslash, and is necessary because the backslash is an escape
character in regular ETAC strings. Alternatively, if single-quoted strings (“raw” strings) are
used, the backslashes must not be doubled.

5.4 Executing from ECGL Commands

The @GEN command can be used to cause the ETAC Code Generator to insert the default
generated lines into the current template lines (rather than into an output file), as illustrated
below.

<@GEN: [INPUT=".\Tmplt.ecgt" INSERT ARGS= (...)]>

In the example above, if INSERT is replaced with the <OUTPUT=) keyword, the default generated
lines are written to the output file specified in the keyword.

The @QPOSTGEN command can be used to execute a new instance of the ETAC Code Generator
after all the QOUTPUT commands have been activated, as illustrated below.

<@POSTGEN: [INPUT=".\Tmplt.ecgt" OUTPUT="C:\...\GenFiles\MyGenFile.txt"
ARGS= (...)] >

6

Programming the ETAC Code Generator

The ETAC Code Generator uses a unique declarative programming language, ECGL (ETAC Code
Generator Language), to generate and maintain text and source code files. However, a declarative
language cannot practically cater for all possible generation scenarios. ECGL is therefore
complemented by an algorithmic programming language. Since the ETAC Code Generator is
implemented in the ETAC™ programming language, the most viable design option is to use that
programming language as the complementary language to ECGL. The code generating process
can therefore be refined to any desired degree by ETAC script. For the majority of cases,
however, ETAC script is not required.

The ECGL and ETAC script used in a template file have different syntaxes; ECGL uses a
declarative syntax, while ETAC script uses an algorithmic syntax (so-called “imperative” syntax).
ETAC script is specified as fixed “data” to ECGL instructions and commands. ETAC script used
in a template file can utilise the full power of the ETAC programming language.

It 1s important to remember that ECGL operates in stages, so ETAC script is activated only when
the appropriate stage is current. For example, just because some ETAC script exists below some
other ETAC script in a template file, that does not necessarily mean that the lower ETAC script
will be activated after the other ETAC script.

6.1 Using ETAC Script

ETAC script can be specified directly in the following ECGL instructions and commands: &FNT
instruction, @INSERT, @SCRIPT, QIF, and QEDIT commands. ETAC script can be specified in
other instructions and commands via the &FNT instruction. (Refs: &FNT, @INSERT, @SCRIPT,

@IF, @EDIT)

The most suitable place to include ETAC script in a template file is in one or more @SCRIPT
commands. This allows ETAC variables, functions, and procedures to be defined in the global cg
data object. Other instructions and commands existing anywhere in the template line block can
simply refer to those definitions to use them. Q@SCRIPT commands can be placed anywhere in the
template line block of a template file, however, they are best placed at the bottom of the file.

(Ref: @SCRIPT)

For template files with complicated template arguments, the ETAC script in a @SCRIPT command
can create one or more custom dialog boxes for the user to enter those template arguments.
However, the ETAC Code Generator itself does not provide any facilities for such dialog boxes.

6.2 Intrinsic Global Functions

The ETAC Code Generator incorporates a number of predefined intrinsic global ETAC functions
for various purposes including for manipulating template lines, if required, before they are
converted to generated lines. The global functions are prefixed by the text <@cg>, and can be
accessed from anywhere within the template line block via the appropriate instructions and
commands. (Ref: 8.2_General Functions)

6.3 Text Array Functions

In addition to the intrinsic global functions, the text array data object contains some function
members to search for and alter text in the fext array. A particularly useful function is the
tlFindMark function which uses a pattern string to find a text line in the text array. Other
member functions can append, delete, retrieve, indent, and insert text lines.

(Ref: 8.3_Data Object: text array)

6.4 Debugging ETAC Script

ETAC script, whether existing in a &FNT instruction, on in an @INSERT, @SCRIPT, QIF, or @GEDIT
command, i1s debugged as described in chapter 2, ETAC Debugger, of the “The Official ETAC
Programming Language” document, ETACProgLang(Official).pdf.

To debug ETAC script, the ETAC Code Generator needs to be started in debug mode via the
RunETAC.exe program (with the DEBUG keyword option) or the context menu command, ‘Debug’,
after placing breakpoints at suitable positions within the ETAC script. The ‘Debug’ menu
command is available only for ETACCodeGen.etac (not for ETACCodeGen.btac).

In the debug window, the ‘Silent Continue’ button needs to be clicked repeatedly until the
debugger pauses at a set break point. Debugging the ETAC script can commence from that point
as described in the aforementioned chapter 2. Note that breakpoints can be placed within the
ETAC script of &ENT instructions and conditions of @IF commands.

The following two illustrations show how to start the ETAC Code Generator in debug mode via
the command line in a command file (<*.cmd> or ¢*.bat>) or shortcut file. The current directory
must be the directory containing ETACCodeGen.etac.

"...\ETACCodeGen.etac" 'TEMPLATE="..." ARGS=(...)' DEBUG

"...\RUNETAC.exe" DEBUG SCRIPTS="ETACCodeGen.etac"
'TEMPLATE="..." ARGS=(...)"'

Although ‘ETACCodeGen.btac’ can be specified on the command line, ‘ETACCodeGen.etac’ is
preferable to avoid a confusing debugging session.

In a command file, the current directory (indicated by the ellipsis) is specified by the MS-DOS®
cd command as shown below.

cd /D "..."

7

ETAC Code Generator Examples

Some examples of how the ETAC Code Generator generates text from template files are shown in
the following sections. The examples are for illustration purposes only, and do not necessarily
represent recommended methods or useful outputs. The shaded line numbers (:) are only for
reference and are not part of the examples themselves. Note that to follow the examples below,
chapter 3_Processing Stages needs to be understood.

7.1 Example 1

This is a simple example of code, generated in the C programming language, to loop through an
array. The generated file contains a code fragment that the user includes into some larger C
program. The header block is shown in colour. The template line block follows the
header block. Meta-codes are shown in bold blue colour.

The Template File (ArrayLoopl.ecgt)

/* This code implements a partial C language code segment that loops through the elements of an array.
The programmer then fills in the rest of the code after pasting it into the source file. */

unsigned long ArraySize;
<ARR EIM TYPE><&MI:[POSA=23 SPACES=1]>*<ARR EIM VAR>;
unsigned long Idx;

/* Get the size of the array. */
ArraySize = GetArraySize (<ARR VAR>) ;

/* Loop through the <ARR VAR> list. */

for (Idx = 0; Idx < ArraySize; Idx++)

{
/* Get the next element from the <ARR VAR> array. */
<ARR EIM VAR> = (<ARR EIM TYPE> *)<ARR VAR>[Idx];

if (*<ARR EIM VAR> == /*TBD: insert value here*/)
{
/*TBD: insert code here*/
}
else

{
/*TBD: insert code here*/

}

User Request to Generate the File via the Command Line
ETACCodeGen.btac 'TEMPLATE="ArrayLoopl.ecgt" OUTPUT="MyArrayLoopl.c" ARGS=(ARRAY=MyArray, ArrayElm, double)'

User Request to Generate the File via the Input Dialog Box
ETACCodeGen.btac 'TEMPLATE="ArrayLoopl.ecgt" OUTPUT="MyArrayLoopl.c" ARGS=(ARRAY=MyArray, ArrayElm, double) PROMPT'

ETAC Code Generator Input Bc =10l
g Input Parameter Entry for the ETAC Code Generator ﬂ

Template File ||AmayLoop1.ecgt
Output File | [MyArrayLoop1.c
Output Folder ||

Title: |Loops through elements of an array

Descripton:
Template to generate the code necessary to loop through
elements of an array.

Keyword-argument Syntax:
<ARRAY= array-variable, array-element-
variable, array-element-type>

Template Arguments:
MyArray, ArrayElm, double

[" Do not display dialog boxes during processing
Event Logging

& Write log entries to the default log folder

= Do not write log entries to a file

" Write log entries to a file on the Desktop

" Write log entries to the file below

[Log File
[" Display log entries to the console
| Generate | Details Quit

If the user runs the ETAC Code Generator with the PROMPT keyword, then the dialog box shown
above is presented for the user to verify or alter.

The Output File (MyArrayLoopl.c)

/* This code implements a partial C language code segment that loops through the elements of an array.
The programmer then fills in the rest of the code after pasting it into the source file. */

unsigned long ArraySize;

double *ArrayElm;

unsigned long Idx;

/* Get the size of the array. */
ArraySize = GetArraySize (MyArray);

/* Loop through the MyArray list. */

for (Idx = 0; Idx < ArraySize; Idx++)

{
/* Get the next element from the MyArray array. */
ArrayElm = (double *)MyArray[Idx];

if (*ArrayElm == /*TBD: insert value here*/)
{
/*TBD: insert code here*/
}
else
{
/*TBD: insert code here*/

}

Explanation

This example demonstrates plain special symbol substitution. Line 19 of the template file
positions <*ArrayElm;> so that ArrayElm is aligned with ArraySize. If <ARR ELM TYPE> is
replaced by a string that is longer than 23 characters, then a space will be inserted before
«<*ArrayElm;>. Note that the output file is actually a modified copy of the template file.

7.2 Example 2

In this example, the ETAC Code Generator uses the femplate file in Example 1, and internally
modifies its output file to generate a more detailed output file. In addition to the arguments
supplied in Example 1, the user supplies a comparison value, and a function (or other code) that
gets inserted in the “if’ part of the conditional statement, and a function (or other code) that gets
inserted in the ‘else’ part of the conditional statement. In addition, the user can supply a field
name if the array element is a structure or class.

ETAC Code Generator Examples 7.2 Example 2 67

The Template File (ArravlLoop2.ecgt)

QECG V1@
~ @Loops through elements of an array (V2)@
. @D=Template code to generate the C language code necessary to loop through elements of an array and execute some
code for each element matching a value.
@C="This code implements a code fragment that loops through the elements (array-element-variable) of an
array (array-variable) and executes some code (if-code, else-code) for each element matching a value
(array-element-value). The programmer then fills in the rest of the code after pasting it
into the source file.

Y U1

Arguments:
0 array-variable Array variable name.
11 array-element-variable A variable name for the element.
12 array-element-type The element type.
13 array-element-value The value that the array element is to match.
14 field-name The name of the field if the element type is a structure or class (optional).
15 if-code The code to execute if the array element matches the value (optional).
16 else-code The code to execute if the array element does not match the value (optional).

"
@0=Desktop::?
19 @T={//ARRAY= (#array-variable, #array-element-variable, #array-element-type, farray-element-value, $" " field-name) }
{/IF CODE=(#if-code)} {/ELSE_CODE= (#else-code) }
20 @P=ARR VAR 1 1; ARR ELM VAR 1 2; ARR EIM TYPE 1 3; VALUE 1 4; FIELD 1 5; IF CODE KW 2 0; IF CODE 2 1;
ELSE CODE KW 3 0; ELSE CODE 3 1;
21 @endhead@
22 <@SYMBOL: [NAME="DOT" ARGS=(<&FNT:[=({@IfElse (("<FIELD>" != "") " " "");})]>)]>
23 <@GEN: [INPUT="ArrayLoopl" INSERT ARGS= (ARRAY=<ARR VAR>, <ARR EIM VAR>, <ARR EIM TYPE>) |>
24 <@OUTPUT: [OFFSET=1 DELETE=2]>
5 /* This code implements a partial code segment that loops through the elements (<ARR EIM VAR>) of the
array <ARR VAR> and executes some code for each element matching the value <VALUE>.
The programmer then fills in the rest of the code after pasting it into the source file. */
<@END: [OUTPUT] >
29 <@OUTPUT: [MARK= (for (Idx = 0; Idx < ArraySize; Idx++)) OFFSET=4 DELETE=1]>
30 <@EVAL: [PRIOR]>
if ((*<ARR ELM VAR>)<DOT><FIELD> == <VALUE>)
<@END: [EVAL]>
13 <@END: [OUTPUT] >
<@IF:[COND=("<IF_CODE KW>" != "")]>
35 <@OUTPUT: [MARK=S (.1if.<()>) OFFSET=1 DELETE=1]>
<IF_CODE>
<@END: [OUTPUT] >
38 <@END: [IF]>

O ©

3 (B

49 <QIF: [COND=("<ELSE CODE_Kw>" != "")]>

40 <@OUTPUT: [MARK=S (.else) OFFSET=1 DELETE=1]>
41 <ELSE_CODE>

42 <@END: [OUTPUT] >

43 <Q@ELSE: []>

<@OUTPUT: [MARK=S (.else) OFFSET=-1 DELETE=4]>
45 <@END: [OUTPUT] >
46 <Q@END: [IF]>

User Request to Generate the File via the Command Line

ETACCodeGen.btac 'TEMPLATE="ArrayLoop2.ecgt" OUTPUT="MyArrayLoop2.c" ARGS=(ARRAY=TheArray, Element, Records, 20,
Age IF CODE=Print (Element); break;)'

The Output File (MyArrayLoop2.c)

/* This code implements a partial code fragment that loops through the elements (Element) of the
array TheArray and executes some code for each element matching the value 20.
The programmer then fills in the rest of the code after pasting it into the source file. */

unsigned long ArraySize;
Records *Element;
unsigned long Idx;

/* Get the size of the array. */
ArraySize = GetArraySize (TheArray);

/* Loop through the TheArray list. */

for (Idx = 0; Idx < ArraySize; Idx++)

{
/* Get the next element from the TheArray array. */
Element = (Records *)TheArray[Idx];

if ((*Element) .Age == 20)
{

Print (Element); break;
}

Explanation

This example shows how to define special symbols within the template file itself (line 22). In
this case, if «"<FIELD>") resolves to a non-empty string then the symbol DOT will represent a dot
character (.), otherwise DOT will represent an empty value. Note that the &FNT instruction at line
22 is not evaluated at that line. It is evaluated at the function processing stage after <DOT> has
been replaced. <FIELD> within that instruction is evaluated when the QEVAL command (lines 30
to 32) is processed. The @SYMBOL command does not itself evaluate special symbols (unless the
EVAL option is specified) or embedded instructions. The result is that at line 31, if <FIELD>
represents a non-empty value then it will be preceded by a dot character, otherwise it will not be
preceded by a dot character. So if Age were not specified in the command line, the line generated
from line 31 would have been: (if ((*Element) == 20)>. Note that if the EVAL option of
the SYMBOL command at line 22 were specified, then the <FIELD> symbol would have been
evaluated at that line, and therefore the QEVAL command at lines 30 and 32 would not have been
required — the &ENT instruction (at line 22) would have been evaluated normally at line 31. The
example uses the @EVAL command and the absence of the EVAL option for illustrative purposes
only.

This example also shows how to internally modify the generated lines from another template file.
Line 23 starts a new independent ECG session, and inserts the content of the output file of that
ECG session into the internal copy of the current template lines just after line 23 (line 23 itself is
automatically deleted). Line 24 deletes the first two lines of the inserted lines (those two lines
are comment lines) and inserts lines 25 to 27, thus replacing those first two lines. Line 29
deletes the line <if (*ArrayElm == /*TBD: insert value here*/)> of the inserted lines
and replaces it with line 31 (after the special symbols have been replaced). Likewise, lines 35 to
37 replace «/*TBD: insert code here*/» of the inserted lines with «Print (Element) ;
break;> because «IF CODE=) has been specified on the command line. If <IF CODE=)> were not
specified on the command line, then the original inserted line would have remained unchanged.
In a similar manner, lines 40 to 42 replace the ‘else’ body with the argument of <(ELSE CODE=)
if specified on the command line. In this example, <ELSE CODE=> was not specified, so line 44
deletes the whole ‘else’ part (four lines) of the inserted lines.

This example demonstrates an important feature of the ETAC Code Generator — that is, to
generate more specialised and sophisticated code based on the output files of existing template
files. For example, the generated file of this example could have been created by the user by
manually modifying the output file generated from Example 1. This example shows that the
ETAC Code Generator could do those modifications by having the user merely specify a few
extra command line arguments rather than the user having to manually do those modifications
himself. Any number of levels of femplate files can be used, each one modifying the output file
generated from the previous template file. And, of course, a single template file can modify the
output file of more than one template file. Example 3 illustrates a template file that modifies the
output file generated in this example.

7.3 Example 3

In this example, the ETAC Code Generator uses the output file generated from the template file in
Example 2 and internally modifies an internal copy of that output file to generate a C function
that returns the index of a found item in an array (or returns -1 if the item is not found). The user
supplies the array element type, and field name if the array element is a structure or class. The
template file generates three files: A “read me” file (the output file) containing some information,
a C a header file, and a C function definition file.

The Template File (FindElement .ecqt)

@QECG V1@

@Finds an element of an array@

@D=Template code to generate the C language code necessary to find a given element of an array.

@C=This code implements a partial code segment that loops through the elements of an array searching
for an element matching a value. The element index is returned if found. -1 is returned if not found.

ETAC Code Generator Examples 7.3 Example 3 69

The programmer can then modify the code (if necessary) .

8 Format: <FUNCTION= function-name, [{pArray}\array-par], [{pValue}\value-par], value-type>
9 <ARRAY= array-element-type, [field-name]>

Arguments:
function-name The name of the generated function.
13 array-par The name of the array parameter of the function (default: pArray).
14 value-par The name of the value parameter of the function (default: pvValue).
value-type The value parameter type.
array-element-type The element type.
17 field-name The name of the field if the element type is a structure or class (optional).

9 @O=Desktop::?
20 @T= {//FUNCTION= (#function-name, SpArray’ ‘array-par, SpValue’ ‘value-par, #value-type) }

21 {//BARRAY= (#array-element-type, $ " field-name) }
22 @P=FNT7NAME 11; ARR PAR 1 2; ARR VAL 1 3; VAL TYPE 1 4; ARR EIM TYPE 2 1; FIELD 2 2;
23 @endhead@

24 <@SYMBOL: [NAME="DOT" ARGS= (<&FNT: [=({QIfElse (("<FIELD>" != "") ", " ""):})]>) EVAL]>
25 The generated code implements a function (<ENT NAME>) that loops through the elements of an
array (<ARR PAR>) and returns the index of the first element matching the value in <ARR VAL>.

28 The files generated are: <&HPAR:[OUTN]> (this file), <FNT NAME>.h, and <FNT NAME>.c.

) <&C:[1>

20 <&C: [(******** Generate the source file *x*x*x*x)]>

31 <@OUTPUT: [PATH="<FNT_NAME>.C" OFFSET=1 DELETETO=eof]>

32 <@GEN: [INPUT="ArrayLoop2" INSERT ARGS= (IF _CODE=return Idx; ARRAY=<ARR_PAR>, ArrElm, <ARR_ELM_TYPE>, <ARR_VAL>,
<FIELD>)] >

33 <QOUTPUT: [OFFSET=1 DELETE=3]>

/* This is the source file for <FNT NAME>(). */

IS

10 int <FNT_NAME> (<ARR EIM TYPE> **<ARR PAR>, <VAL TYPE> <ARR VAL>)

: [OUTPUT] >
<@OUTPUT : [MARK= (for (Idx = 0; Idx < ArraySize; Idx++)) OFFSET=4 DELETE=1]>
10 if (Compare ((*ArrElm)<DOT><FIELD>, <ARR VAL>))
41 <@END: [OUTPUT] >
2 <QOUTPUT: []>

44 return -1;
45 }
6 <QEND: [OUTPUT]>
<Q@END: [OUTPUT] >
48 <&C: [(¥******* Generate the header file *****xx¥x)]>
49 <QOUTPUT: [PATH:"<FNT_NAME> .h"]>
50 /* This is the header file for <FNT NAME> (). */

)2 int <FNT NAME> (<ARR EILM TYPE> **<ARR PAR>, <VAL TYPE> <ARR VAL>);
53 <QEND: [OUTPUT]>

User Request to Generate the Files via the Command Line

ETACCodeGen.btac 'TEMPLATE="FindElement.ecgt" OUTPUT="ReadMe.txt" ARGS=(FUNCTION=Find, , pSearchval, char *
ARRAY=CustomerRec, CustName)'

The Output File (Readme. txt)

The generated code implements a function (Find) that loops through the elements of an
array (pArray) and returns the index of the first element matching the value in pSearchval.
The programmer then fills in the rest of the code after pasting it into the source file.

The files generated are: ReadMe.txt (this file), Find.h, and Find.c.

Generated File (Find.c)

/* This is the source file for Find(). */

int Find(CustomerRec **pArray, char * pSearchval)

{

unsigned long ArraySize;
CustomerRec *ArrElm;
unsigned long Idx;

/* Get the size of the array. */
ArraySize = GetArraySize (pArray) ;

/* Loop through the pArray list. */

for (Idx = 0; Idx < ArraySize; Idx++)

{
/* Get the next element from the pArray array. */
ArrElm = (CustomerRec *)pArray[Idx];

if (Compare ((*ArrElm) .CustName, pSearchvVal))
{

return Idx;

}

return -1;

}

Generated File (Find.h)

/* This is the header file for Find (). */

int Find(CustomerRec **pArray, char * pSearchval);

Explanation

Line 32 inserts the default generated lines (the content of the output file) of the template file
ArrayLoop?2.ecgt, which itself uses ArrayLoopl.ecgt (note that the output file itself is not
created on disk). Those generated lines are then modified by this remplate file (lines 33 to 46)
and output to the file Find.c via line 31. Another file, Find.h, is generated via lines 49 to 53.
Note that line 40 replaces the original ‘if’ statement of the output file generated from
ArrayLoopl.ecgt.

In practice, parts of a generated file that need to be modified by another femplate file contain
specially marked lines to be searched for by the other template file. For example, if the line
<//MOD1/ /> were inserted after line 30 of ArrayLoopl.ecgt, and <//MOD2//» inserted after line
32, and </ /MOD3/ /> after line 36, then those marked lines could be searched for in the QOUTPUT
commands as markers for replacing the desired lines. However, the markers would remain in the
generated file. There are two options here:

(1) if the markers are not desired in the generated file, then they can be removed using the
@DELETE command (eg: <@DELETE: [FILE="<FNT NAME>.c" LINES=A(.//MOD%%°d//).]1>);

(2) the markers could remain so that a template file could modify a previously generated file
relative to the markers.

A template file could read in such a marked file using the QRINSERT command, and those markers
could be searched for using the @QOQUTPUT command, which modifies the lines relative to the
markers. By using a suitable convention of markers, source files can be constructed so that they
contain “protected lines” which are not intended to be modified by users. Those protected lines
are modified or replaced by various template files which implement various features into the
marked source files.

7.4 Example 4

In this example, the ETAC Code Generator generates a general template file. The user then fills
in specified parts of the generated file to make it a specific template file. All template files
require a file name, a heading, a keyword template, keyword position specification, and a default
output file path.

The Template File (ECGTSourceFile.ecgt)

QECG V1a@

QETAC Code Generator Template Source File(@

@D=Template for creating a skeleton template file for use by the ETAC Code Generator.

@C=The resulting file can be used with the ETAC Code Generator after appropriate modifications.

Format: <ARGS= [{ECGT File}\HEADING], TEMPLATE, SYMPOS, [{Desktop::?}\OUTPUT]>

Keyword:
ARGS Information to set up a skeleton ECGT file to be filled in by the user.

Symbol Names:

ARGS:—
HEADING The heading of the ECGT file that exists between two @ symbols. (optiopnal) Default: ECGT
File
TEMPLATE The keyword template (inserted after @T=). The full keyword template is specified here.
SYMPOS The symbol position specifications (inserted after @P=). Each specification is of the

form: 'symbol idxl idx2 ...;'
OUTPUT The output path for the ECGT file (inserted after ©@0=). (optional) Default: Desktop::?

ETAC Code Generator Examples 7.4 Example 4

71

18 @O=Desktop::?

19 @T={//ARGS=(SECGT File' HEADING, #TEMPLATE, #SYMPOS, SDesktop::? ~OUTPUT) }

20 @P=HEADING 1 1; TEMPLATE 1 2; SYMPOS 1 3; OUTPUT 1 4;

21 @endhead@

KA A A A KA A A A A KA A A A A A A A A A A A A A A A A A A Ak kA Ak Ak h kA Ak Ak hhk kv kA hkhhkkkr k)%

This file contains the skeleton for the ETAC Code Generator template file <&HPAR: [OUTN]>.
Replace sections between « and » (inclusively) with appropriate text.

N NN
g W N

*
*
26 * ARGS=<HEADING>, <TEMPLATE>, <SYMPOS>, <OUTPUT>
*
*

Kk hkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhhkhkhkhkhkhhkkhkhhkhkhkkhkhkhkhkhkkhkhkhkhkhkrkkhkhkhkhhxkkk

50 ///// start of file <&HPAR: [OUTNI> /////
21 @ECG Vi@

22 @Q<HEADING>(@

o7 @D=Template for creating «...».

24 @C="«Insert detailed description here»

36 Format: <&FNT: [=({@cgTrimStrEOL (CcgGetKWSyntax (["<TEMPLATE>"] ?));})]>
Keyword:
«Insert keyword here» «Insert keyword description here»

41 Symbol Names:

42 «Insert keyword herex»:-

43 «Insert parameter here» «Insert parameter description here» (eg: ...).
44

45 Examples:

«Insert examples here»
8 @QO=<OUTPUT>
Q@T=<TEMPLATE>
50 @P=<SYMPOS>
51 @endhead@

Y2 /**

52 * This code «describe the purpose of this code herex.
E_’l*
55 * Generated Files:
50 * «Insert names of generated files herex»
5%
J * ECGT Command Line Arguments:
* «Insert command line arguments here»
*

~k**~k**~k**~k**~k**~k**~k**~k**~k**~k**~k**~k*************************/

02 «Insert template body herex»
63 ///// End of file <&HPAR: [OUTN]> /////

// Some useful template fragments follow. //

<&<&C: ...]>>

<&<Q@CMT:[...]>>
0 <&<@END: [CMT]>>

2 <&<&FENT: [=(...)]>>
/4 <&<@IF:[COND=("<...>" = "...")]>>
) <&<Q@ELSE: []>>

0 <&<Q@END: [IF]>>

8 <&<@OUTPUT: [PATH="..." MARK=(...) OFFSET=... DELETE=...]>>
9 <&<@END: [OUTPUT]>>

71 <&<@GEN: [INPUT="..." OUTPUT="..." ARGS=(...)]>>

} <&<@SYMBOL: [NAME="..." ARGS=(...)]>>

User Request to Generate the File via the Command Line

ETACCodeGen.btac 'TEMPLATE="ECGTSourceFile.ecgt" OUTPUT="MyCGTFile.ecgt" ARGS=(ARGS=Finds an element of an array.

{//FUNCTION= (#function-name, $pArray’ “array-par, $pValue’ ‘value-par, #value-type)} {//ARRAY= (#array-element-type,
$*“field-name)}, FNT NAME 1 1; ARR PAR 1 2; ARR VAL 1 3; VAL TYPE 1 4; ARR EIM TYPE 2 1; FIELD 2 2;)'

The Output File (MyCGTFile.ecgt)

KA KA AR KRR A A A AR A A A A AR A A A A A A AR A A A Ak A Ak Ak A hk kA Ak Ak Ak hkh kA Ak hkhkhkhkxk k%

This file contains the skeleton for the ETAC Code Generator template file MyCGTFile.ecgt.

* Replace sections between « and » (inclusively) with appropriate text.
*

*

* ARGS=Finds an element of an array., {//FUNCTION= (#function-name,$pArray’ array-par,S$pValue’ value-par, #value-

type)} {//RRRAY=(#array-element-type,$’ "field-name)}, FNT NAME 1 1; ARR PAR 1 2; ARR VAL 1 3; VAL TYPE 1 4;
ARR EIM TYPE 2 1; FIELD 2 2;, Desktop::?

*

KA KA A AR A A A A A A A A A A A A A A A AR KRR A A A AR A A A AR AR A A AR AN A A AR AR A A AR AN, KK

///// Start of file MyCGTFile.ecgt /////
QECG V1@

@Finds an element of an array.@
@D=Template for creating «...».
@C="«Insert detailed description here»

Format: <FUNCTION= function-name, [{pArray}\array-par], [{pValue}\value-par], value-type> <ARRAY= array-element-
type, [field-name]>

Keyword:
«Insert keyword herex» «Insert keyword description herex»

Symbol Names:
«Insert keyword herex»:-
«Insert parameter here» «Insert parameter description here» (eg: ...).

Examples:
«Insert examples here»
@O=Desktop::?
@T={//FUNCTION= (#function-name, $pArray’ ~array-par,$pvalue’ ‘value-par, #value-type)} {//ARRAY=(#array-element-type,
$* “field-name) }
@P=FNT NAME 1 1; ARR PAR 1 2; ARR VAL 1 3; VAL TYPE 1 4; ARR ELM TYPE 2 1; FIELD 2 2;
@endhead@

/**

* This code «describe the purpose of this code herex».

Generated Files:
«Insert names of generated files herex»

ECGT Command Line Arguments:
«Insert command line arguments herex»

X% ok ok kX

‘k‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k***********************/

«Insert template body here»
///// End of file MyCGTFile.ecgt /////

// Some useful template fragments follow. //
<&C:[...]>

<@CMT:[...]>
<QEND: [CMT]>

<EFNT: [=(...)]>

<@IF:[COND=("<...>" = "_...")]>
<@ELSE: []1>
<@END: [IF]>

<QOUTPUT: [PATH="..." MARK=(...) OFFSET=... DELETE=...]>
<@END: [OUTPUT] >

<@GEN: [INPUT="..." OUTPUT="..." ARGS=(...)]>

<@SYMBOL: [NAME="..." ARGS=(...)]>

Explanation

After filling in the specified sections of MyCGTFile.ecgt, the user then deletes the lines up to
and including <///// Start of file MyCGTFile.ecgt /////»> and the lines from and
including <///// End of file MyCGTFile.ecgt /////>. The resulting file is the desired
template file. Note how line 36 automatically creates the format of the arguments for the desired
template file. The &FNT command activates a small ETAC script which produces the desired
format from the keyword template of the generated template file. As for any generated file, the
output of this template file can be the source for another template file if specialised template files
need to be produced. Most systematic changes that a user can make to a generated file can be
made by a template file via suitable parameters as explained in Example 2.

Note especially the use of protection instructions in this example, from line 67 to line 83, and
how they generate the corresponding text lines in the output file.

ETAC Code Generator Examples 7.5 Example 5 73
7.5 Example 5

In this example, the ETAC Code Generator generates a skeleton C++ source code to process
named events. The user then fills in specified parts of the generated files to carry out the actual
processing of the events. This example shows how multi-lines operate.

The Template File (EventProcessing.ecgt)

1 Q@ECG Vi@

~ @Class Event Processing@

~ @D=Template code to generate the C++ code necessary for class event processing.
4 @C=This template implements code fragments for class event processing.

Format: <CLASS= CLASS NAME, CLASS INIT> <EVENT= EVENT NAME, ...>
8 Keyword:
9 CLASS Information relating to the class.
10 EVENT Information relating to the events to be processed.

12 Symbol Names:

3 CLASS:—
14 CLASS_NAME Full name of the class. eg: TextWin.
15 CLASS INIT First initials of the class name specified at CLASS NAME. eg: tw.
17 EVENT: -
8 EVENT NAME Name of the event to process. eg: READ FILE. (repeated)
10 Example:

21 CLASS=TextWin, tw
22 EVENT=READ FILE, WRITE FILE, UPDATE
24 @0=Desktop::?
25 @T={//CLASS= (#CLASS NAME, #CLASS INIT)} {//EVENT=(#EVENT NAME, ?)}
/6 @P=CLASS NAME 1 1; CLASS INIT 1 2; EVENT NAME 2 1;
@endhead@

28 /*‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k‘k*‘k‘k*‘k‘k*‘k**‘k**‘k**‘k*****

29 * This code implements code fragments for class event processing.

*
* Generated Files:
2 * <CLASS NAME>.h, <CLASS NAME>.cpp
*
*

ECGT Command Line Arguments:
<QJOIN: []>
6 * CLASS=<CLASS NAME>, <CLASS INIT> EVENT=
5/ <&OMIT: [STR=() FIRST]><EVENT NAME:#1><&OMIT: [STR=(,)]>
38 <@END: [JOIN]>

39 **‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k‘k*‘k‘k*‘k**‘k**‘k**‘k**‘k*****/

0 <@SYMBOL: [NAME="EVNTNUM" ARGS=(1)]>

42 «To be put in appropriate event functions»
43 <CLASS_INIT:L>Process (e<CLASS_ INIT:U> <EVENT NAME:U:#1>);

(o8

14 <&C: [(======== C Header File Creation ========)]>
15 <@QOUTPUT: [PATH="<CLASS NAME>.h" BACKUP OFFSET=1 DELETETO=eof]>
46 /* Events for <CLASS INIT:L>Process(). */

47 #define e<CLASS INIT:U> <EVENT NAME:U:#1><&MI: [POSA=30 SPACES=1]><EVNTNUM+.>

49 class <CLASS NAME>
50 {
51 protected:
52 void <CLASS INIT:L>Process (unsigned long pEvent); /* Event processing procedure for this class. */
53 };
54 <QEND: [OUTPUT]>
55 <&C: [(======== C Source File Creation ========)]>
6 <QOUTPUT: [PATH="<CLASS NAME>.cpp" BACKUP OFFSET=1 DELETETO=eof]>
#include "<CLASS NAME>.h"

/* Event processing procedure for this class. */

0 void <CLASS NAME>::<CLASS INIT:L>Process (unsigned long pEvent)

61 {
) if (UpdateData (TRUE))

64 switch (pEvent)
65 {

66 case e<CLASS INIT:U> <EVENT NAME:U:#1> :\
6 «TBD: Enter event handling code for e<CLASS INIT:U> <EVENT NAME:U:#1> herex»\
68 break;\

default:

ASSERT (false) ;
72 }

VERIFY (UpdateData (FALSE)) ;

return;

}
<QEND: [OUTPUT] >

User Request to Generate the File via the Command Line

ETACCodeGen.btac 'TEMPLATE="EventProcessing.ecgt" OUTPUT="ReadMe.txt" ARGS=(CLASS=TextWin, tw EVENT=READ FILE,
WRITE FILE, UPDATE) '

The Output File (ReadMe . txt)

/**

* This code implements code fragments for class event processing.

Generated Files:
TextWin.h, TextWin.cpp

ECGT Command Line Arguments:
CLASS=TextWin, tw EVENT=READ FILE, WRITE FILE, UPDATE

***/

* %k ok ok %

«To be put in appropriate event functions»
twProcess (eTW_READ FILE);
twProcess (eTW WRITE FILE);

twProcess (eTW_UPDATE) ;

Generated File (TextWin.h)

/* Events for twProcess(). */

#define eTW READ FILE 1
#define eTW WRITE FILE 2
#define eTW UPDATE 3

class TextWin
{
protected:
void twProcess (unsigned long pEvent); /* Event processing procedure for this class. */
bi

Generated File (TextWin.cpp)
#include "TextWin.h"

/* Event processing procedure for this class. */
void TextWin::twProcess (unsigned long pEvent)
{

if (UpdateData (TRUE))

{
switch (pEvent)
{
case eTW_READ FILE :
«TBD: Enter event handling code for eTW READ FILE herex»
break;

case eTW WRITE FILE :
«TBD: Enter event handling code for eTW WRITE FILE here»
break;

case eTW_UPDATE :
«TBD: Enter event handling code for eTW UPDATE here»
break;

default:
ASSERT (false) ;
}

VERIFY (UpdateData (FALSE)) ;
}

return;

Explanation

Lines 37, 47, and 66 to 69 are multi-lines. This means that a single template line can produce
more than one generated line. Line 37 generates three lines, one for each event name

READ FILE, WRITE FILE, and UPDATE. The first of the three lines will not have a space before
it but the others will, and the last line will not have a comma after it but the others will. The
three lines are concatenated by the @QJOIN command, resulting in a single generated line

(CLASS=TextWin, tw, EVENT=READ FILE, WRITE FILE, UPDATE). Line 47 generates three
lines, one for each event name, with a sequential number for each line beginning with the number
one. The sequential numbers are produced by the special symbol «(<EVNTNUM+ . >, which adds the
current line number (beginning with line number zero) to the value of the symbol EVNTNUM. The
value of EVNTNUM is defined in the template file itself at line 40. This results in the three
‘define’ statements at the top of the file TextWin.h. The lines 66 to 69 are continued lines and
are treated as a single template line with end-of-line characters replacing the backslashes. That
single template line is a multi-line and generates three lines, one for each event name, with the
end-of-line characters embedded in each line. The result is three lots of four lines; each lot being
a ‘case’ block of the ‘switch’ statement. Continued lines had to be used because multiple lines
can be generated only from a single multi-/ine (unless the @DO command is used), and the four
lines had to be concatenated first to form that single multi-line.

This example is a typical case where markers can be used to insert additional event code into the
generated files using a suitably designed template file. If a marker were placed before lines 48
and 70 (the markers would be different from each other), then this or another femplate file can be
designed to insert the event code before those markers on an existing file previously generated
from this template file. The suitably designed template file does not generate any files, but
modifies existing files (specified via a command line argument). In this way, any number of new
events can be added to the previously generated files at any time. Example 6 illustrates how this
can be done.

7.6 Example 6

In this example, the ETAC Code Generator does not generate an output (other than an information
output file) but reads two existing files (modified versions of TextWin.h and TextWin.cpp of
Example 5) and adds additional event code to those files. The user then fills in specified parts of
the modified files to carry out the actual processing of the events. The modified parts of those
two files are shown in BOLD.

Existing File (TextWin.h)

/* Events for twProcess(). */
#define eTW READ FILE 1
#define eTW WRITE FILE 2
#define eTW UPDATE 3
/ / <EVNTDEF»//

class TextWin
{
protected:
void twProcess (unsigned long pEvent); /* Event processing procedure for this class. */

bi

Existing File (TextWin.cpp)
#include "TextWin.h"

/* Event processing procedure for this class. */
void TextWin::twProcess (unsigned long pEvent)

{
if (UpdateData (TRUE))

{
switch (pEvent)

éase eTW _READ FILE :
break;

case eTW_WRITE FILE :
break;

case eTW_UPDATE :
break;

//<EVNTBODY»//

default:
ASSERT (false) ;

ETAC Code Generator Examples 7.6 Example 6

76

}

VERIFY (UpdateData (FALSE)) ;

return;

The Template File (AddEvent .ecgt)

@ECG V1@
2 (@Add Event Processing(@

@D=Template code to add the C++ code necessary to existing files containing event processing.
4 @C=This template implements code fragments for adding events to class event processing files.

=

6 Format: <CLASS= CLASS NAME, CLASS INIT> <EVENT= EVENT NUM, EVENT NAME, ...>
8 Keyword:

9 CLASS Information relating to the class.

10 EVENT Information relating to the events to be processed.

12 Symbol Names:

13 CLASS: -

14 CLASS_NAME Full name of the class. eg: TextWin.

15 CLASS INIT First initials of the class name specified at CLASS NAME. eg: tw.
17 EVENT: -

18 EVENT_NUM Event number of the first event.

© EVENT NAME Name of the event to process. eg: READ FILE. (repeated)

21 Example:

22 CLASS=TextWin, tw
3 EVENT=4, DELETE, MODIFY

~5 @0=Desktop::?

20 @T={//CLASS= (#CLASS_NAME, #CLASS_INIT)} {//EVENT=(#EVENT NUM, #EVENT_ NAME, ?) }
2/ @P=CLASS NAME 1 1; CLASS INIT 1 2; EVENT NUM 2 1; EVENT NAME 2 2;

28 @endhead@

0 /*‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**************************

20 * This code implements the code fragments added to files containing class event processing.

Modified Files:
<CLASS NAME>.h, <CLASS NAME>.cpp

EE S S

ECGT Command Line Arguments:
56 <@JOIN: []1>
i/ * CLASS=<CLASS NAME>, <CLASS INIT> EVENT=<EVENT NUM>
¢, <EVENT NAME:#1>
<@END: [JOIN]>
40 ***/
41 <&C: [(======== C Header File Modification ========)]>
42 <QOUTPUT: [PATH="<CLASS NAME>.h" MARK=A (. //«EVNTDEF»//.) OFFSET=-1 BACKUP]>
45 #define e<CLASS INIT:U> <EVENT NAME:U:#1><&MI:[POSA=30 SPACES=1]><EVENT NUM:#0+.>
44 <@END: [OUTPUT] >
45 <&C: [(======== C Source File Modification ========)]>
46 <QOUTPUT: [PATH="<CLASS NAME>.cpp" MARK=A (. //«EVNTBODY»//.) OFFSET=-1 ALIGNA BACKUP]>
47 case e<CLASS INIT:U> <EVENT NAME:U:#1> :\
8 «TBD: Enter event handling code for e<CLASS INIT:U> <EVENT NAME:U:#1> herex»\
49 break; \

51 <@END: [OUTPUT]>

User Request to Generate the File via the Command Line

ETACCodeGen.btac 'TEMPLATE="AddEvent.ecgt" OUTPUT="ReadMe.txt" ARGS=(CLASS=TextWin, tw EVENT=4, DELETE, MODIFY)'

The Output File (ReadMe . txt)

/**

This code implements the code fragments added to files containing class event processing.

Modified Files:
TextWin.h, TextWin.cpp

ECGT Command Line Arguments:
CLASS=TextWin, tw EVENT=4, DELETE, MODIFY

*‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k***********************/

LR S S

Modified File (TextWin.h)

/* Events for twProcess(). */

#define eTW READ FILE 1
#define eTW WRITE FILE
#define eTW UPDATE 3

N

#define eTW DELETE 4
#define eTW MODIFY 5
// <EVNTDEF»//

class TextWin
{
protected:
void twProcess (unsigned long pEvent); /* Event processing procedure for this class. */

}i

Modified File (TextWin.cpp)

#include "TextWin.h"

/* Event processing procedure for this class. */
void TextWin::twProcess (unsigned long pEvent)
{ if (UpdateData (TRUE))
{ switch (pEvent)
éase eTW_READ FILE :

break;

case eTW WRITE FILE :
break;

case eTW_UPDATE :
break;

case eTW DELETE :
«TBD: Enter event handling code for eTW DELETE here»
break;

case eTW_MODIFY :
«TBD: Enter event handling code for eTW MODIFY here»
break;

// <EVNTBODY>»//
default:

ASSERT (false) ;
}

VERIFY (UpdateData (FALSE)) ;
}

return;

}

Explanation

</ /«EVNTDEF»//> in TextWin.h, and </ /«EVNTBODY»//» in TextWin.cpp are markers for the
@OUTPUT command to insert generated event code lines. Those markers remain with their
respective files for future addition of event code. Line 42 searches for the marker

</ /«EVNTDEF»//» in TextWin.h, and inserts the output line generated from line 43 before the
marker. Line 46 searches for the marker <//«EVNTBODY»//» in TextWin.cpp, and inserts the
output lines generated from lines 47 to 50 before the marker. Those inserted lines are aligned to
the beginning of the marker (ALIGNA). The markers remain in the modified files. If the
«OFFSET=) options in lines 42 and 46 were omitted, then the code would have been inserted after
the markers.

Markers can be used with any text file that needs to have modifications in particular places within
that file. A system of beginning and ending markers can be used inclosing text that may be
replaced or modified by the ETAC Code Generator. This system can be used to add or modify
features of a computer program at any time during its life-cycle. A new feature typically needs
programming code to be added at various places within various source files; the ETAC Code
Generator can accomplish that task via markers in the source files. Markers can also exist in
template files; the markers can be deleted from the internal copy of template files using the
@DELETE command after modifications have been made relative to the markers. The generated
files will then contain no markers.

In the example above, the event number, obtained from the first argument of the command line
keyword (EVENT=), is specified by the user. However, it is possible to include some ETAC script
in the template file to parse the line before the marker (//«EVNTDEF»//) and obtain the event
number of the last event in TextWin.h adding one to that event number. That calculated event
number can then be used as the default event number if the user does not specify one.

Notice that the six examples above do not use the @RSCRIPT command, that is to say, they do not
use explicit ETAC programming. Most template files need not involve ETAC programming, and
can be constructed by merely declaring the desired structure of the generated files.

8

ECGL Function Reference

ETAC script within any template file can communicate with the ETAC Code Generator via

specially designed ETAC functions (ECGL functions). There are general purpose functions, and
also functions to access and modify various properties of the components of a template file, such
as accessing the values of a special symbol. There are also global variables that can be accessed.

Unicode File Specification

Important Note

A file specification string in ETAC cannot contain unpaired Unicode surrogate code points. If
a file specification containing such code points needs to be specified, the MS-DOS® short
(8dot3) format of the file specification should be used. The short format for files and
directories can be displayed from an MS-DOS® command prompt window by typing the
command dir with the option /X. The operating system may need to be configured to store the
short format of file specifications.

8.1 Global Variables

Global variables can be accessed from any ETAC script within the template line block. The
names of such variables begin with @cg, and are directly accessible. The variables can also be
accessed via the ‘cg’ data object. For example, the two variables @cgMainTemplate and
cg.@cgMainTemplate are the same.

The following boxes contain a description of all the global variables. R means that the variable
can be read from, and W means that the variable can be written to.

cg9

cg
value A data object. (RW)

Details
The cg variable is an ETAC data object containing the definitions of all the ECGL functions and

global variables. Template designers can also define their own global functions, procedures, and
variables in the data object. The cg variable itself should not be reassigned.

Each ECG session contains its own cg variable which exists only within that session. ¢

@cgECGVrsnID

@cgECGVrsnID

value A string stack object. (R)

Details

Contains the ETAC Code Generator version identification string. The @egECGVrsnID variable
should not be reassigned. ¢

@cgMainTemplate

@cgMainTemplate

value A text array data object, or a null stack object (?). (RW)

Details

Contains all the template lines in the template line block during the processing of the

@SCRIPT [POST] command. The ETAC sequence containing the template lines exists in the
tsaTextLines data member of @RcgMainTemplate. If the contents of @cgMainTemplate are
modified, the actual template line block will be affected. The contents of @cgMainTemplate
should be modified only by the last @SCRIPT [POST] command.

For all stages other than the @QSCRIPT [POST] stage, value will be a null stack object.

Each ECG session contains its own @cgMainTemplate variable which exists only within that
session. ¢

@cgSectTemplData

@cgSectTemplData

value A text array data object, or a null stack object (?). (RW)

Details

Contains all the template lines in the current section of the template line block during the
processing of the @SCRIPT [POST] command for that section. The ETAC sequence containing the
template lines exists in the tsaTextLines data member of @cgSectTemplData. If the contents
of @cgSectTemplData are modified, the actual template lines of the current section will be
affected. The contents of @cgSectTemplData should be modified only by the last

@SCRIPT [POST] command.

value will be a null stack object for all stages other than the @SCRIPT [POST] stage, or if the
template line block does not contain any @SECTION commands.

Each section of template lines contains its own @cgSectTemplData variable which exists only
within that section.

Related Information
SECTION e«

8.2 General Functions

This section describes the general ECGL functions that can be used within any template file. The
names of all such functions begin with @cg, and are directly accessible. The functions can also
be accessed via the ‘cg’ data object. For example, the two function calls @cgSortLines (X) and
cg.@cgSortLines (X) are the same. The ECGL functions themselves should not be reassigned.

EGCL Function Reference 8.2 General Functions

81

8.2.1 Functions by Category
The ECGL functions are listed below by category.

Date Time

@QcgDateTimeFormatted

Disk File
@QcgCreateFile + @cgPathExists + @cgWriteAllToOne + @cgWriteFile

File Data

@cgAddFileData + @cgCreateNewFile + @cgGetFileData + @cgGetFileFlags +
@cgRemoveFileData + @cgRenameDataFile + dcgReplFileFlags + @cgSetFileFlags +
@QcgWriteAllToOne + @cgWriteFile

File Path

@cgCvtRelativePath + @cgGetDefaul tOutPath + @cgGetWindowsDir +
@cgIsOnlyDirPath + @cgIsOnlyFileName + @cgIsRelativePath

Log File
@cgAddLogEntry

Special Symbol

@cgAddCmdSymb + RcgGetCmdSymbVals « @cgGetNumSymbVals + @cgGetSpecSymbVal +
@cgGetSymbCount + @cgGetSymbValAtOff + RcgGetTArgsTree + @cgIncrSymbCount «
@cgSetSymbCount

String

@cgExtractInnerStr + @cgFindString + @cgFormatStr + QcgGetStrU «+
@cgIsStrDblQuoted + @cgIsStrInParen + @cgIsStrInt + @cgIsStrNegInt +

@cgIsStrPosInt + @cgIsStrZerolInt + RcgParseString + @cgPutStrU «+ @cgRemQuotes +

@cgReplSubStr + @cgSeqToStrLines + @cgStrLinesToSeq + @cgTrimStrEOL
@cgTrimStrSpaces

String Sequence

@cgDelDuplLines + @cgIndentLines + @cgRevLines + @cgSeqToStrLines +
@cgSortLines + @cgStrLinesToSeq

Text Array
@cgCvtTmplData + @cgCvtToAngBraks + @cgGetFileData + @cgNewTextArray +

@cgRevlines + @cgSortLines
Unicode
QcgGetStrU + RcgPutStrU

Other

@cgExitECG + @cgGenerate + @cgGetCmdLineArgs + @cgGetHeaderPar «+
@cgGetInputBoxArgs + @cgGetKWArgs + @cgGetKWSyntax + @cgRUnETACFile
@cgShowNewDialog + @cgWriteCon

EGCL Function Reference

8.2 General Functions 82

8.2.2 Function Summary
The table below contains an alphabetical list of the ECGL functions.

ECGL Function Summary for Scripts

Function Description

@cgAddCmdSymb Adds a new special symbol and its values to the list of command symbols.

@cgAddFileData Adds a file path and its fext array data object to the internal file list.

@cgAddLogEntry Appends an entry to the list of log file entries.

@cgCreateFile Creates a new empty file if it does not exist.

@cgCreateNewFile Creates and loads a new file if it does not exist on disk.

@cgCvtRelativePath Returns the full path of a file path, which may be relative to a specified
directory path.

@cgCvtTmplData Converts a text array containing ECGL template text to template lines.

@cgCvtToAngBraks Converts all substrings from «[~> to «<<» and «<~]> to <>) in a text array
data object.

@cgDateTimeFormatted | Returns a formatted date and time string of the current date and time.

@cgDelDuplLines Deletes duplicate elements of a string sequence.

@cgExitECG Exits the ETAC Code Generator.

@cgExtractInnerStr Extracts the substring from a string enclosed within brackets.

@cgFindString Returns the index of a substring existing in a string sequence.

@cgFormatStr Replaces certain substrings within a format string.

@cgGenerate Runs an internal instance of the ETAC Code Generator.

@cgGetCmdLineArgs Gets the input arguments from the command line.

@cgGetCmdSymbVals Gets the values of a command symbol.

@cgGetDefaultOutPath | Returns the effective full file path specification of the output file.

@cgGetFileData Gets the fext array data object associated with a file.

@cgGetFileFlags Gets the file data flags affecting all files of the current £CG session.

@cgGetHeaderPar Gets the specified header parameter.

@cgGetInputBoxArgs Gets the input arguments from the main input dialog box.

@cgGetKWArgs Processes keywords and their arguments.

@cgGetKWSyntax Gets the keyword-arguments syntax of a keyword template.

@cgGetNumSymbVals Gets the number of values of a special symbol name.

@cgGetSpecSymbVal Gets the value of a special symbol.

@cgGetStrU Returns the middle part (specified as u-chars) of a string.

@cgGetSymbCount Gets the symbol counter value of a special symbol.

@cgGetSymbValAtOff Gets the value of a special symbol at a specified offset.

@cgGetTArgsTree Gets the raw keyword-arguments sequence tree of the keyword template
of the current template file.

@cgGetWindowsDir Get the full path of the system Windows directory.

@cgIncrSymbCount Increments the symbol counter value of a special symbol by one.

@cgIndentLines Indents all text lines in a string sequence.

@cgIsOnlyDirPath Determines if a path specification is a directory path only.

@cgIsOnlyFileName Determines if a file path specification contains only a file name (and

extension).

EGCL Function Reference

8.2 General Functions 83

@cgIsRelativePath Determines if a file path specification is a relative path.

@cgIsStrDblQuoted Determines whether a string is delimited by double quote characters.

@cgIsStrInParen Determines whether a string is delimited by matching parentheses.

@cgIsStrint Determines whether a string is in the form of an integer.

@cgIsStrNegInt Determines whether a string is in the form of a negative integer.

@cgIsStrPosInt Determines whether a string is in the form of a positive integer.

@cgIsStrZerolnt Determines whether a string is in the form of a zero integer.

@cgNewTextArray Creates a new empty text array data object.

@cgParseString Parses a string based on a pattern and\or sub-patterns.

@cgPathExists Determines whether a specified type of disk entity exists for a path
specification.

@cgPutStrU Replaces a substring (specified as u-chars) in a string.

@cgRemoveFileData Removes a file path and its text array data object from the internal file
list.

@cgRemQuotes Trims a string by removing leading and trailing single or double quotes
and then spaces.

@cgRenameDataFile Renames an internal data file path to a new path.

@cgReplFileFlags Replaces the internal flags of an individual file.

@cgReplSubStr Replaces all substrings of a string that match a pattern string with a string
or strings.

@cgRevlines Reverses the sequential order of the text lines of a string sequence or of a
text array data object.

@cgRuUnETACFile Runs an ETAC (or TAC) file as it would be run from RunETAC.exe.

@cgSeqToStrLines Converts from a string sequence to a string with EOL characters.

@cgSetFileFlags Sets the file data flags affecting all files of the current ECG session.

@cgSetSymbCount Sets the symbol counter value of a special symbol.

@cgShowNewDialog Shows a new uninitialised input dialog box to the user.

@cgSortLines Sorts the text lines of a string sequence or of a fext array data object.

@cgStrLinesToSeq Converts from a string containing EOL-separated text lines to a sequence.

@cgTrimStrEOL Trims a string by removing trailing EOL characters.

@cgTrimStrSpaces Trims a string by removing leading and trailing spaces.

@cgWriteAllToOne Writes the data of all files on the internal file list to a single disk file.

@cgWriteCon Displays a message to the console window.

@QcgWriteFile Writes the specified internal data file to disk.

“EOL” stands for “end-of-line”.

8.2.3 Function Definitions
The following boxes contain a description of all the ECGL functions.

@cgAddCmdSymb

@cgAddCmdSymb s-name val-seq

s-name A string stack object.

val-seq A string sequence.

Details

Adds a new special symbol (s-name) and its values (val-seq) to the list of command symbols. The
special symbol can have more than one value, and is used like any other special symbol.

s-name is the name of a new special symbol, and is in the format of the proper special symbol
name syntax (alphanumeric-underscore characters beginning with an alphabetic character).
s-name must not be the same as a symbol name specified at the «@P=> keyword of the header
block. Note that s-name is only the name of a special symbol; it cannot contain other text (eg:
<INPUT: 3> is invalid for s-name, but «<INPUT» is valid). Only UCS-2 (BMP Unicode scalar value)
characters are recognised in s-name.

val-seq is a string sequence containing one or more special symbol values. If this function is
called more than once with the same s-name, the values in val-seq are concatenated to the
existing values for that s-name.

This function operates in the same manner as the RSYMBOL command.

Other Information
SYMBOL «

@cgAddFileData

@cgAddFileData file-path file-data
file-path A string stack object.

file-data A text array data object.

Details
Adds a file path (file-path) and its text array data object (file-data) to the internal file list.

file-path is internally expanded to its full file path specification before being used by this
function.

file-data is an ETAC data object representing the internal file data to be associated with file-path.
file-data is typically obtained from a call to the @RcgGetFileData or @cgNewTextArray
functions.

The ETAC Code Generator maintains data from files in an internal file list, identifying the data
by the full file path specification of those files. This function adds file-path and file-data to that
file list. If file-path already exists on the file list, the associated text array data object is replaced
by file-data. The data is written to the disk file specified by its associated file specification
before the end of the current ECG session, or at other specified times.

Additional Information

Unicode File Specification

Other Information
(@cgGetFileData = @cgNewTextArray * @cgRemoveFileData ¢

@cgAddLogEntry

@cgAddLogEntry entry error write

entry A string stack object.

error An integer stack object containing a logical boolean value.

write An integer stack object containing a logical boolean value.
Details

Appends an entry (entry) to the list of log file entries.
entry is the actual log message desired to be appended to the list of log file entries.

error 1s true if the entry is considered to be an error message, otherwise it is false. Logged
error messages cause a dialog box to be presented to the user asking whether to view the log file
just before the ETAC Code Generator terminates.

write 1s true if the log file is to be written immediately, otherwise the log file is written before
the ETAC Code Generator terminates. ¢

@cgCreatefFile

@cgCreateFile file-path
file-path A string stack object.

Details

Creates a new empty disk file as specified (file-path) if it does not exist on disk. If the specified
file already exists on disk, this function has no effect.

The created file is not registered by the ETAC Code Generator. An error event will occur if the
file cannot be created.

Additional Information
Unicode File Specification

Other Information
(@cgCreateNewFile ¢

@cgCreateNewfFile

@cgCreateNewFile file-path src-path — bool

file-path A string stack object.
src-path A string stack object, or a null stack object (?).

bool An integer stack object containing a logical boolean value.

Details

Creates and loads a new file as specified (file-path) if it does not exist on disk. The function
returns true (bool) if the file did not already exist and was actually created and loaded
successfully, otherwise the function returns false (bool).

If the specified file already exists on disk, no action occurs and the function returns false.

If src-path is a relative path, it will be relative to the directory containing the template files. Note
that the current directory symbol, <.> (dot), is regarded as an absolute path. For example,
«.\MyFile.txt) is regarded as an absolute path.

The ETAC Code Generator maintains data from files in an internal file list, identifying the data
by the full file path specification of those files. If src-path is a null stack object, and the
specified file (file-path) does not exist on disk, this function adds file-path and an empty text
array data object to that file list. If file-path already exists on the file list, the empty fext array
data object will replace the existing one. If src-path is not a null stack object, and the specified
file (file-path) does not exist on disk, this function copies the file specified by src-path as the new
file and loads the text array data object of that new file. The data is written to the disk file
specified by its associated file path specification before the end of the current ECG session, or at
other specified times.

Additional Information
Unicode File Specification

Other Information
(@cgCreateFile = @cgGetFileData ¢

@cgCvtRelativePath
@cgCvtRelativePath dir-path file-path — path-str
dir-path A string stack object.

file-path A string stack object.
path-str A string stack object.

Details

Returns the full file path specification (path-str) of a specified file path (file-path), which may be
relative to a specified directory path (dir-path). If file-path is a relative path then the returned
path specification is relative to dir-path, otherwise the returned path specification is the full file
path of file-path.

Note that the current directory symbol, <.» (dot), is regarded as an absolute path. For example,
«.\MyFile.txt) is regarded as an absolute path.

Examples
The following illustrations show how the @cgCvtRelativePath function can be used.

(1) @cgCvtRelativePath ('C:\MyFolder\Other' 'Programs\TextFile.txt');
(2) @cgCvtRelativePath ('C:\MyFolder\Other' 'C:\Files\TextFile.txt");

Example (1) returns the string «C: \MyFolder\Other\Programs\TextFile.txt) because the
second argument is a relative path to the first argument.

Example (2) returns the string «C:\Files\TextFile.txt) because the second argument is an
absolute path; the first argument is ignored. ¢

@cgCvtTmplData

@cgCvtTmplData ta-data — ta-data
ta-data A text array data object.

Details
Converts a text array (ta-data) containing ECGL template text to template lines.

Specifically, this function concatenates commands in the text array of ta-data spread over more
than one line into a single line. For example, if the text array in ta-data contains

<@DO: [FOR: [...]
WITH: [...]
WITH: [...]]>

on separate lines as shown, then this function converts the text above to a single line as shown
below.

<@DO: [FOR: [...] WITH: [...] WITH: [...]]>

The reason for the conversion is that commands must be on a single text line to be processed
correctly. If all commands in ta-data are already on a single text line, then this function need not
be called.

Examples

The following illustrations show how the @cgCvtTmplData function can be used.
(1) <@INSERT: [PATH="..." SCRIPT=(@cgCvtTmplData ())]>;

(2) void QRecgCvtTmplData (dcgGetFileData (...));

In example (1), a file (indicated by the ellipsis) containing template lines is to be inserted into the
current template lines to be processed as part of the template file. The commands in the inserted
file need to be on a single line, which is accomplished by the @egCvtTmplData function.

In example (2), an existing file (indicated by the ellipsis) containing femplate lines is to be
converted to be processed as a template file at some other point.

Other Information
(@cgGetFileData ¢

@cgCvtToAngBraks

@cgCvtToAngBraks ta-data — ta-data,

ta-data A text array data object.
ta-data, A text array data object.

Details

Converts all substrings «[~> to <<> and «<~])> to <> in the text array of a text array data object
(ta-data). For example, a string element, «... [~FRUIT~]...», of the text array is converted to «...
<FRUIT>...>. ta-data, is ta-data with a possibly modified text array.

This function is typically used with template files whose template lines are based on angle
brackets («<> and <), such as HTML files. Such files may not render correctly in their native
display program if they contain meta-codes. The solution is to use <[~> and «~])> instead of «<»
and) for meta-codes within those files. This function can then be used with the @INSERT
command to convert < [~> and «<~]» back to «<» and <> so that meta-codes operate correctly within
the template file. See Appendix A: HTML Template Files for more details.

Example
The following illustration shows how the @cgCvtToAngBraks function can be used.

(1) <Q@INSERT: [PATH="MyHIML.html" SCRIPT=(@cgCvtToAngBraks ())]>

In example (1), the file MyHtml.html is assumed to have meta-codes enclosed within «[~> and
<~]», rather than within «<> and <>>. The @egCvtToAngBraks function converts the «[~> and «~]>
to «<<> and <, respectively, during the insertion. The content of the file MyHtml.html is
unaffected.

Additional Information
Appendix A: HTML Template Files ¢

@cgDateTimeFormatted

@cgDateTimeFormatted fmt-dt utc — dt-str

fmt-dt A string stack object.
utc An integer stack object containing a logical boolean value.

dt-str A string stack object.

Details

Returns a formatted date and time string (d¢-str) of the current date and time based on a specified
format (fm¢-dt). 1If utc is true, the returned string represents the UTC (“Universal Time
Coordinated”) date and time (previously referred to as “Greenwich Mean Time” or GMT),
otherwise it represents the local date and time.

The following table shows the date\time symbols and their meaning within the format string fm¢-
dt. Other symbols (eg: °/’) are presented as given. Where a single digit is specified, only
leading zero digits are suppressed; other non-zero digits are presented. For example, if the
seconds is 20, then «[s]»> will display 20; if the seconds is 3, then «[s]> will display 3, but
<[ss]> will display 03.

Desired Date and Time Format Symbol

Year (four digits, last two digits) [yyyyl, [yyl]

Month (long name, short name, two digits, one digit) [(MMMM], [MMM], [MM], [M]
Day (long name, short name, two digits, one digit) [dddd], [ddd], [dd], [d]
12 hour (two digits, one digit) [hh], [h]

24 hour (two digits, one digit) [HH], [H]

Minute (two digits, one digit) [mm], [m]

Second (two digits, one digit) [ss], [s]

Fraction of seconds (3 digits) [f]

AM\PM (2\P, AM\PM, a\p, am\pm) [T], [TT], [t], [tt]

Examples
The following illustrations show how the @cgDateTimeFormatted function can be used.

(1) @cgDateTimeFormatted ("Today is [dd]/[MM]/[yyyy] [HH]:[mm]:[ss]",
false) ;

(2) @cgDateTimeFormatted ("Today is [ddd] [dd]-[M]-[yy] [h]: [mm]:[s].[f]
[ttl", true);

(2) @cgDateTimeFormatted ("It is [dddd], day [d], in the month of [MMMM],
in the year [yyyy] AD.", true);

Example (1) returns the current local date and time in a form such as «Today is 20/05/2014
19:06:23).

Example (2) returns the current UTC date and time in a form such as «Today is Tue 20-5-14
7:06:23.592 pm.

Example (3) returns the current UTC date and time in a form such as «<It is Tuesday, day
20, in the month of May, in the year 2014 AD.>.

Other Information
&DATE «

@cgDelDuplLines

@cgDelDuplLines in-seq | in-data — out-seq | in-data
in-seq A string sequence.
in-data A text array data object.

out-seq A string sequence.

Details

Deletes duplicate elements of a string sequence (in-seq) returning a new string sequence (out-
seq). Note that the original string sequence, in-seq, is not modified. Alternatively, the function
deletes duplicate elements of the text array in a text array data object (in-data) returning the
same data object without duplicate elements. All strings in the returned string sequence or text
array will be unique.

The function leaves the first one of the duplicate strings and removes the other duplicates.

Examples
The following illustrations show how the @egDelDuplLines function can be used.

(1) Seq := ["hello"™, "goodbye", "hello"]; RtnSeq := @cgDelDuplLines (Seq) ;
(2) void @cgDelDuplLines (@cgGetFileData ("MyTextFile.txt"));

Example (1) returns the new sequence «["hello", "goodbye"] in RtnSegq, leaving the original
sequence in Seq unmodified.

Example (2) assumes that the specified file exists, and removes duplicate text lines from an
internal copy of that file. The file is written to disk with no duplicate lines before the current
ECG session ends. Note that, in this example, the @cgGetFileData function returns a text array
data object of the specified file. ¢

@cgEXItECG

QcgExitECG

Details

Exits the ETAC Code Generator. This is the same as clicking the ‘Quit’ button on the input dialog
box. ¢

@cgExtractinnerStr

QcgExtractInnerStr in-str — out-str

in-str A string stack object.
out-str A string stack object.

Details

Extracts the substring (out-str) from a string (in-str) enclosed within brackets. in-str must begin
with one of the bracket characters, < (>, <[>, <{», and end with the corresponding bracket character,
), <>, <}>, otherwise out-str will be the same as in-str. If in-str is delimited as said, out-str will
contain the text in-between, but excluding, the bracket characters.

Examples
The following illustrations show how the @cgExtractInnerStr function can be used.

(1) @QcgExtractInnerStr ("[the string]");
(2) QcgExtractInnerStr ("not delimited by brackets");
(3) QcgExtractInnerStr (" [mismatched brackets)");

Example (1) returns <the string.

Example (2) returns (not delimited by brackets) because in-str was not delimited by the
appropriate brackets.

Example (3) returns <« [mismatched brackets)» because the outer brackets to not correspond. ¢

@cgFindString

@cgFindString str-seq substr — idx

str-seq A string sequence.
substr A string stack object.

idx An integer stack object.

Details

Returns the index of the first occurrence of a substring (substr) existing in a string sequence (str-
seq). The search is case-sensitive.

idx is the index of the first string in the sequence str-seq that contains the substring substr. idx is
0 if no substring is found.

Example
The following illustration shows how the @egFindString function can be used.

(1) @RegFindString (["good morning", "good afternoon", "good evening"]
"after") ;

Example (1) returns the value 2 on the object stack. ¢

@cgFormatStr

@cgFormatStr fmt-str repl-seq — str

fmt-str A string stack object.
repl-seq A numeric or string sequence, or a null stack object (?).

str A string stack object.

Details

Replaces symbols within a format string (fm¢-str), returning a formatted string (str). This
function creates a new temporary local dictionary when processing fmt-str.

The symbols within fmt¢-str are of the form:

1. «<%n%> where n is a positive integer. There can be more than one $n% for a particular n, but
no n can exceed the number of elements in repl-seq. Each n is an index into repl-seq, which
must be a numeric or string sequence. The string or number at that index (7) replaces all the
$n% in fmt-str. Whitespaces must not exist between the percent characters and n.

2. «%%*) is replaced with . Note that % is special everywhere else, so an actual literal $ must be
represented as «$*).

3. <% (expression) %> where (expression) is an ETAC expression, which must return a number
or string when activated. The symbol is replaced by the string form of the returned value.

4. ${procedure}%> where {procedure} is an ETAC procedure, which must return a number or
string when activated. The symbol is replaced by the string form of the returned value.

5. «%variable%> where variable is an ETAC variable, which must return a number or string
when activated. The symbol is replaced by the string form of the returned value.
Whitespaces must not exist between the percent characters and variable. Note that the value
of the dictionary item represented by variable can be a procedure, which is executed,
returning a number or string.

Any number of the above symbols can be used in the same fmt-str. The command cpy can be
used within expression (3) and procedure (4) above. cpy is identical to the ETAC command
copy_top. If symbol (1) is not used, then the second argument (fmt-str) to the function is
ignored (it must be the null stack object).

If a symbol is correct but the resulting value could not be converted to a string, then the symbol is
replaced by «?fext?>, where text is the text between the percent characters of the symbol. Ifa
symbol could not be processed then it remains as is.

The function returns the modified string s¢r.

Examples
The following illustrations show how the @QegFormatStr function can be used. The symbols
mentioned above are highlighted (pink) in the examples.

(1) @cgFormatStr ("The %1% chased his %2%." ["dog", "tail"]);

(2) @QcgFormatStr ("Some people %1% %1% %1% themselves 10%* of the time
$1%edly" ["repeat"]):

(3) Var := "programmers"; QcgFormatStr ("Hello %Vars" ?);
(4) var := {("pro" + "grammers");}; @cgFormatStr ("Hello %Var%" ?);

(5) QegFormatStr ('Hello % ("pro" + "grammers")$%' ?
(6) @cgFormatStr ('Hello %${add2 "pro" "grammers";

(
(7) @QegFormatStr ("The value of %1% times %2% is %(&@ V := cpy (2 * 3))%.
That value %V% is %4%." ["two", 3, "incorrect", "correct"]):;

Example (1) returns <The dog chased his tail..

Example (2) returns «<Some people repeat repeat repeat themselves 10% of the
time repeatedly.

Examples (3) to (6) return <Hello programmers).

Example (7) returns <The value of two times 3 is 6. That value 6 is correct.).
The variable V is allocated temporarily within @egFormatStr. Note the use of the special cpy
command, which is the same as the copy_top ETAC command. ¢

@cgGenerate

@cgGenerate tmpl-path out-path arg-str gen-path flags — bool
tmpl-path A string stack object.

out-path A string stack object, a sequence, or a null stack object (?).
arg-str A string stack object.

gen-path A string stack object, or a null stack object (?).

flags An integer stack object containing a binary boolean value.
bool An integer stack object containing a logical boolean value.
Details

Runs an internal instance of the ETAC Code Generator on a fremplate file (tmpl-path) in a new
ECG session.

tmpl-path is a file path of a template file. A relative path specified for tmpl-file is relative to the
current directory. tmpl-path must not be an empty string.

out-path specifies the file path of the output file, or an ETAC sequence, into which the main
generated lines are to be put. (a) If out-path is a non-empty string, it overrides the default output
path specified (at <@0=>) in the header block of tmpl-file. A relative path specified for out-path is
relative to the current directory. (b) If out-path is an empty string, a unique program-generated
file name of the form «ECGOutput....txt>, where ... is an eight digit random number, will be created
in the current directory and used as out-path. (¢) If out-path is a null stack object (?) then the
default output path specified (at «@0=>) in the header block of tmpl-file is used. (d) If out-path is
a sequence, then the generated lines will be appended to the sequence.

The special directory <Desktop: :» at the beginning of out-path specifies to output the generated
lines to the Windows®™ Desktop; the character ? for the file name indicates the aforementioned
unique program-generated file name (see at (b) above).

arg-str is the template argument string matching the keyword template of the template file
specified by tmpl-file.

gen-path s a directory path indicating the directory into which the generated files specified by
relative output paths of QOUTPUT commands are to be written. A relative path specified for gen-
path is relative to the current directory. A null stack object (?) for gen-path indicates the current
directory. gen-path must not be an empty string.

flags is reserved and must be 0x00000000.

bool will be true if the function succeeds, otherwise it will be false.

Examples
The following illustrations show how the @cgGenerate function can be used. For illustration
purposes, the return value of the @cgGenerate function in the following examples is discarded.

(1) void RcgGenerate ("C:\\TmplFile.ecgt" "TextFile.txt" "FUNCTION=Find, ,

pSearchVal, char * ARRAY=CustRec, CustName" "Gen Files" 0x00000000) ;
(2) void @cgGenerate ("MyFiles/MakeEXE.ecgt" ? "FILE=..." ? 0x00000000) ;
(3) void RcgGenerate ("MyFiles/MakeEXE.ecgt" "Desktop::\\Gen\\?"

"FILE=..." ? 0x00000000) ;
(4) Oseq :- [];

void @cgGenerate ("MyFiles/MakeEXE.ecgt" OSeq "FILE=..." ? 0x00000000) ;
(5) Pars := Success := @cgShowNewDialog() ;

if Success then {void @cgGenerate (Pars);} endif;

Example (1) processes the template file «C:\TmplFile.ecgt> producing an output file
TextFile.txt relative to the current directory. The template arguments for the template file are
(FUNCTION=Find, , pSearchVal, char * ARRAY=CustRec, CustName>. Any @QOUTPUT
commands within the template file that have a relative path will create generated files in the
folder «Gen Files) relative to the current directory.

Example (2) processes the template file \MyFiles/MakeEXE.ecgt) relative to the current
directory producing an output file as specified in the header block of the template file. The
template arguments for the template file are as specified. Any QOUTPUT commands within the
template file that have a relative path will create generated files in the current directory.

Example (3) is the same as example (2) except that the output file will be a unique program-
generated file (eg: ECGOutput31014640.txt) created in the Gen folder on the Windows" Desktop.

Example (4) is the same as example (2) except that the main generated lines will be appended to
the sequence OSeq rather than being written to an output file.

Example (5) obtains input arguments from the user via a dialog box, which is the same as the
main input dialog box. If the user clicks the ‘Generate’ button on the dialog box, the
@cgShowNewDialog function returns true in Success, and also returns a procedure (in Pars)
containing the user-entered arguments. That procedure is then used with the @cgGenerate
function to generate the desired files. Note that if Pars is activated, then the top stack objects
will be the raw arguments for the @cgGenerate function; those arguments may be modified if
desired before being used with the @cgGenerate function, although that is not typically done.

Other Information
@cgShowNewDialog = @GEN * @POSTGEN ¢

@cgGetCmdLineArgs

@cgGetCmdLineArgs — args-data
args-data A data object.

Details

Gets the input arguments (args-data) from the command line. The input arguments are returned
in an ETAC data object which contains the following data members.

Member

claIniDirPath

claTemplateFilePath

claOutputFilePath

claGenDirPath

claTmplArguments

claLogOpt

claLogFilePath

claPrompt
claShowLog
claSilent
claArgTree

claECGTSrcDir

clalogDir

Examples

Description

A string containing the value of «<INI DIR=) without quote characters,
or null (?) if «<INI DIR=) was not specified.

A string containing the value of «<TEMPLATE=) without quote characters.

A string containing the value of <OUTPUT=) without quote characters, or
null (?) if «OUTPUT=)> was not specified.

A string containing the value of «GEN DIR=) without quote characters,
or null (?) if «GEN_ DIR=) was not specified.

A string containing the value of <ARGS=) or (ARG FILE=). If (ARGS=)
was specified, the string will include the parentheses; if (ARG FILE=)
was specified, the string will be without quote characters.

A string containing the log option specified on the command line. The
string will contain one of the following values:

«NL» for (NO_LOG> option,

«AL» for <(AUTO_LOG) option,

<LF» for <LOG=) option (see clalLogFilePath),

or an empty string if a log option was not specified.

A string containing the value of <LOG=> without quote characters, or
null (?) if <LOG=> was not specified.

Contains true if «<PROMPT»> was specified, otherwise contains false.
Contains true if «(SHOW LOG) was specified, otherwise contains false.
Contains true if «<SILENT)> was specified, otherwise contains false.

An ETAC sequence containing a duplicate of the raw keyword-
arguments sequence tree obtained directly from the command line as
would be obtained from the @cgGetKWArgs function.

Contains the directory path of the directory containing the ETAC Code
Generator template files (*.ecgt).

A string containing the full directory path (without quote characters) of
the log file if claLogOpt is an empty string.

The following illustrations show how the @cgGetCmdLineArgs function can be used.

(1) DirPath := Q@cgGetCmdLineArgs () .claGenDirPath;
(2) Args := RcgGetCmdLineArgs () ;

Args.

{
DirPath := claGenDirPath;
OutFile := claOutputFilePath;

bi
(3) @cgGetCmdLineArgs () .
{
DirPath := claGenDirPath;
OutFile := claOutputFilePath;

J

Notice the full stop (“period”) in the examples above. ¢

@cgGetCmdSymbVals
@cgGetCmdSymbVals s-name — val-seq | ?

s-name A string stack object.

val-seq A string sequence.
Details

Gets the values (val-seq) of the specified special symbol (s-name) existing on the list of command
symbols.

s-name is the name of a special symbol as defined by the @SYMBOL command or by the
@cgAddCmdSymb function. Note that s-name is only the name of a special symbol; it cannot
contain other text (eg: «<INPUT: 3» is invalid for s-name, but <INPUT) is valid).

val-seq is a string sequence containing the values of the specified special symbol. If that special
symbol (s-name) does not exist on the list of command symbols, this function returns a null stack
object (?).

Related Information
@cgAddCmdSymb

Other Information
oSYMBOL ¢

@cgGetDefaultOutPath
@cgGetDefaultOutPath — file-path | 2
file-path A string stack object.

Details
Returns the effective full file path specification of the output file of the current ECG session.

If the current template file was evoked via the @GEN command with the INSERT option, then a
null stack object (?) is returned by this function.

Other Information
&HPAR

@cgGetFileData

@cgGetFileData file-path — file-data | 2
file-path A string stack object.

file-data A text array data object for a file.

Details
Gets the text array data object (file-data) associated with the specified file (file-path).

file-path is internally expanded to its full file path specification before being used by this
function.

file-data is an ETAC data object representing the internal file data of the specified file.

The ETAC Code Generator maintains data from files in an internal file list, identifying the data
by the full file path specification of those files. If file-path already exists on the file list, the
associated text array data object is returned in file-data. If file-path does not exist on the file list,
this function will load and register the disk file (if it exists) onto that list, returning the associated
text array data object in file-data. If the file does not exist on the file list and on the disk, this
function will return a null stack object (?). The data is written to the disk file specified by its
associated file path specification before the end of the current ECG session, or at other specified
times.

Note that the text array of the returned data object from a loaded disk file will have text lines that
were delimited only by Cgls, Cg, or 'f within the file data; text lines delimited by other EOL
characters within the file data are not recognised.

Other Information
@cgAddFileData = @cgRemoveFileData ¢

@cgGetFileFlags

@cgGetFileFlags — flags
flags An integer stack object containing a binary boolean value.

Details

Gets the file data flags (flags) affecting all files of the current ECG session. A returned value of
: !CGF_NO WRITES: indicates that no internal file data of the current ECG session is to be
written to disk.

Note that the following ETAC pre-processor definition needs to be made in the script that calls
this function.

[* No data 1s written to disk. *]
::define !CGF NO WRITES 0x00000001

Example
The following illustration shows how the @egGetFileFlags function can be used.

(1) ::define !CGF NO WRITES 0x00000001
if (@cgGetFileFlags () &and :!CGF NO WRITES:) then {...} endif;

Example (1) checks if any files of the current ECG session are to be written to disk.

Related Information
(@cgSetFileFlags

Other Information
(@cgRepFileFlags ¢

@cgGetHeaderPar

@cgGetHeaderPar par-str — par-val

par-str A string stack object.
par-val A string stack object.

Details
Gets (par-val) the specified header parameter (par-str) of the header block.

par-str is a string as defined for the keywords of the &HPAR instruction.

par-val is a string as is produced by the &HPAR instruction.

Additional Information
&HPAR

Example
The following illustration shows how the @cgGetHeaderPar function can be used.

| (1) RcgGetHeaderPar ("DESC") ;

Assuming that the header block contains <@D=This file generates C code», example (1)
returns the string «<This file generates C code>. ¢

@cgGetlnputBoxArgs

@cgGetInputBoxArgs — args-data | ?
args-data A data object.

Details

Gets the input arguments (args-data) from the main input dialog box. The main input dialog box

is the one displayed as a result of specifying the PROMPT keyword on the command line. If
PROMPT was not specified, this function returns a null stack object (?).

Note that this function does not obtain information from the input dialog box presented via the
@GEN and @POSTGEN commands.

The input arguments are returned in an ETAC data object which contains the following data
members.

Member

ibaTemplateFilePath

ibaOutputFilePath

ibaGenDirPath

ibaTmplArguments

ibaLogOpt

ibalLogFilePath

ibaShowLog

ibaSilent

Examples

Description
A string containing the value of the template file (at Template File).

A string containing the value of the output file (at Output File).

A string containing the value of the folder path to contain the
generated files (at Output Folder).

A string containing the value of the template arguments (at Template
Arguments:).

A string containing the log option specified in the dialog box. The
string will contain one of the following values:

* (NL» for (NO_LOG> option (at Do not write log entries to a file),

* (AL for <(AUTO_LOG> option (at Write log entries to a file on the
Desktop),

* (LF» for <LOG=> option (at Write log entries to the file below) (see
ibalogFilePath),

* or an empty string if a log option was not specified (at Write log
entries to the default log folder).

A string containing the value of the log file path (ibalLogOpt is
«LE»), or an empty string if the path was not specified.

Contains true if the log entries were specified to be displayed to the
console (at Display log entries to the console), otherwise contains
false.

Contains true if silent mode was specified (at Do not display dialog
boxes during processing), otherwise contains false.

The following illustrations show how the @cgGetInputBoxArgs function can be used. The
examples assume that the main input dialog box was displayed.

Args.
{
DirPath
OutFile
}i

{
DirPath

OutFile

J

(1) DirPath := Q@cgGetInputBoxArgs () .ibaGenDirPath;
(2) Args := @cgGetInputBoxArgs () ;

= ibaGenDirPath;

ibaOutputFilePath;

(3) @RcgGetInputBoxArgs () .

= ibaGenDirPath;

ibaOutputFilePath;

Notice the full stop (“period”) in the examples above. ¢

@cgGetKWArgs

@cgGetKWArgs tmpl arg-str sep — bool str-seq

tmpl A string stack object, or a string sequence.

arg-str A string stack object.

sep A string stack object, or a null stack object (?).

bool An integer stack object containing a logical boolean value.

str-seq A string sequence.

Details

Processes keywords and their arguments (arg-str), based on a keyword template (tmpl), into a
string sequence tree (str-seq). Note that this function operates in the same way as the ETAC
command kw_args.

sep 1s a string containing three UCS-2 (BMP Unicode scalar value) characters. The left-most
character determines the character for separating the parameters in the keyword template specified
in tmpl. The middle character determines the source argument separators in the argument string
(arg-str). That character cannot be a whitespace. The right-most character must be a zero
character (0). For example, the string ¢, #0> indicates that the parameters specified in tmpl are
separated by commas (the default), and the arguments in arg-str are separated by a hash
character. The default is effectively ¢, , 0>, and is indicated by a null stack object (?) for sep.

tmpl is either a string indicating a single keyword template, or a sequence of strings each of which
is part of a nested keyword template. The first sequence element specifies the main group of
template blocks; each other element specifies a keyword block. A string value for tmpl is
effectively a sequence containing that string value.

Important Note
If any element of tmpl does not have a valid syntax, the consequence is unpredictable.
@cgGetKWArgs does not cater for elements with an invalid syntax.

arg-str is the source string to be parsed, consisting of keywords and their arguments. ETAC
comments within arg-str are logically replaced with one space, unless the comments are within a
pair of double quotes. Backslashes (<\») in arg-str that are outside of string blocks are ignored
and the character following a backslash is accepted literally. Escaped ETAC comments outside of
string blocks are retained, as in this example, <(KW=argument \[*comment retained*\]».
The backslashes are automatically removed, leaving «<KW=argument [*comment retained*]»
as the effective arg-str. Without the backslashes in the example, the comment is replaced with a
single space. arg-str can include double-angle quoted substrings (the : ! KA ANGLE QUOTES:
flag is automatically applied), so the example above can be presented as (KW=argument
«[*comment retained*]»» to retain the comment.

bool indicates whether arg-str has matched the keyword template in tmpl. 1f bool is true, the
match was successful, and the parsed arg-str will be contained in the returned output tree (st7-
seq). If bool is false, the match failed, and str-seq will contain a sequence of strings describing
the reasons for the failure.

str-seq is the output tree containing nested sequences for each matched block corresponding to
the keyword template in tmpl. Each matched and parsed block consists of a sequence containing
one or more subsequences. Each subsequence contains string elements. The first element in the
subsequence is the matched keyword, and the subsequent elements are the matched arguments or
a matched and parsed block.

For full information on the keyword-argument system see Appendix A: Keyword-arguments
Specification in the document “The Official ETAC Programming Language”
(ETACProgLang(Official).pdf).

Example
The following illustration shows how the @QegGetKWArgs function can be used.

(1) @cgGetKWArgs ("{//A(#al) /k/C(x)}{/D($a2)/-e(#a3,?)}" "-ea,b C -e c" ?);

Example (1) returns true followed by the sequence
«rmrem, "x"l, ["-e", "a", "b", "c"]]» asthe second top stack object.

Additional Information

See Appendix A: Keyword-arguments Specification in the document “The Official ETAC
Programming Language” (ETACProgLang(Official).pdf). ¢

@cgGetKWSyntax
@cgGetKWSyntax tmpl sep —> sntx-str
tmpl A string stack object, or a string sequence.
sep A string stack object, or a null stack object (?).

sntx-str A string stack object.

Details

Gets the keyword-arguments syntax (sntx-str) of a keyword template (tmpl). sntx-str will contain
a string showing the user-friendly syntax based on tmp!.

tmpl and sep are as defined for the function @cgGetKWArgs, except that for sep (if it is a string)
the middle character must be a zero character (0), and the third character determines the character
for separating the options in the returned syntax (sntx-str). The default is effectively ¢, 0\», and
indicated by a null stack object (?) for sep. (Note that in ETAC, a backslash character in a string
is represented as two backslashes or a backslash followed by a space.)

Example
The following illustration shows how the @cgGetKWSyntax function can be used.

(1) @cgGetKWSyntax ("{//A (#al)/k/C(x)}{/D($a2)/-e(#a3,2)}" "00|");

Example (1) returns the syntax string «<<A al|k|[C> [D {a2}|-e a3, ...D.

Additional Information
@cgGetKWATrgs ¢

@cgGetNumSymbVals

@cgGetNumSymbVals s-name — num

s-name A string stack object.
num An integer stack object.

Details
Gets the number of values (num) of a special symbol name (s-name).

s-name must conform to a restricted special symbol format as follows,

[([: 17)-] [:]

where is in the format of a special symbol name as defined in the «@P=) keyword, by the
@SYMBOL command, or by the @cgAddCmdSymb function. is an integer (usually positive).
is number, as defined in the special symbol syntax diagram.

An example of an s-name is <FNT NAME/CMD:-2/SUBCMD:3/CMD TYPE).

num will be a positive number, or zero if the specified special symbol does not exist. The number
of special symbol values is the number of values remaining at and after the argument position
corresponding to the special symbol in the «@P=) keyword (modified by the syntax of s-name), or
is the number of special symbol values for special symbols defined via the RSYMBOL command or
the @cgAddCmdSymb function.

Examples
The following illustrations show how the @cgGetNumSymbVals function can be used.

(1) $P=... FRUIT 1 2;
NumSymbs := @cgGetNumSymbVals ("FRUIT")
(2) <@SYMBOL: [NAME="FRUIT" ARGS=(apple), (
NumSymbs := @cgGetNumSymbVals ("FRUIT") ;
(3) @cgAddCmdSymb ("FRUIT" ["apple", "orange", "banana"]);
NumSymbs := @cgGetNumSymbVals ("FRUIT") ;

4

orange), (banana)]>

In example (1), assume that the special symbol FRUIT has values apple, orange, banana, pear,
peach. Then NumSymbs will have the value 4, because the special symbol FRUIT at <$SP=)
indicates the value orange (the second index is 2), and there are four values at and after orange.

In examples (2) and (3), NumSymbs will have the value 3, being the total number of values of the
specified special symbol.

In the examples above, if the argument to @cgGetNumSymbVals were "FRUIT:2", then the value
of NumSymbs would have been two less than specified in the examples because "FRUIT:2"
indicates the second (2) value after the one specified by FRUIT.

Additional Information
Special Symbol Syntax Diagram

Other Information
@SYMBOL = @cgAddCmdSymb - 2.1.1_Parameters (<@P=> parameter) ¢

@cgGetSpecSymbVal

@cgGetSpecSymbVal s-name — s-val | ?

s-name A string stack object.

s-val A string stack object.

Details
Gets the value (s-val) of a special symbol (s-name).

s-name is the name of a special symbol as defined in the «@P=> keyword, by the @SYMBOL
command, or by the @cgAddCmdSymb function. Note that s-name is only the name of a special
symbol; it cannot contain other text (eg: <INPUT: 3> is invalid for s-name, but <INPUT» is valid).

s-val will be the value of the symbol specified by s-name. If that symbol contains more than one
value, only the nominal value will be returned.

If the specified special symbol is undefined or does not have a string value, a null stack object (?)
will be returned.

Other Information

@cgGetCmdSymbVals = @cgGetSymbValAtOff - @SYMBOL = @cgAddCmdSymb
2.1.1_Parameters (<@P=) parameter) ¢

@cgGetStrU
@cgGetStrU str offset len — out-str| ?
str A string stack object.
offset A non-negative integer stack object.
len A non-negative integer stack object.
out-str A string stack object.
Details

Returns (out-str) the middle substring (offset, len) of a string (str). offset and len are in u-char
character units.

offset is a zero-based u-char character offset into str. If offset indicates a character beyond the
last u-char character of st¢r, then a null stack object will be returned by the function.

len is the maximum number of u-char characters to be obtained from st beginning at offset. If
len exceeds the remaining characters of str, then only the remaining characters are obtained.

out-str is a substring of str beginning at u-char character offset with u-char character length up to
len.

Examples
The following illustrations show how the RegGetStrU function can be used.

(1) @cgGetStrU ("hello-ha" 5 1);
(2) @cgGetStrU ("hello-ha" 6 4);
(3) @cgGetStrU ("hello-ha" 8 4);
(4) @cgGetStrU ("thumbs\#1F44D#up" 6 2);
(5) @cgGetStrU ("thumbs\#1F44D#up" 7 2);

Example (1) returns the string <->.
Example (2) returns the string <hav.
Example (3) returns a null stack object because offset is beyond the last character of str.

Example (4) returns the string equivalent of <\#1F44D#w. Note that the Unicode supplementary
plane code point U+1F44D (Thumbs Up Sign) is internally represented as a surrogate pair, but is
only one u-char character wide. Because /en (2) is the u-char character length, both w-chars
(surrogate pairs) of the character at offset 6 and the following character (u), are obtained.

Example (5) returns the string <up»> because it begins at u-char character offset 7 of str. ¢

@cgGetSymbCount
@cgGetSymbCount s-name — cnt-val

s-name A string stack object.

cnt-val A non-negative integer stack object.

Details
Gets the symbol counter value (cnt-num) of a special symbol (s-name).

s-name is the name of a special symbol as defined in the «@P=) keyword, by the @RSYMBOL
command, or by the @cgAddCmdSymb function. Note that s-name is only the name of a special
symbol; it cannot contain other text (eg: «<INPUT: 3> is invalid for s-name, but «<INPUT» is valid).
The special symbol (s-name) need not be currently defined.

cnt-val is the current counter value of the specified special symbol (s-name). The initial counter
value of a special symbol is zero.

Related Information
@cgSetSymbCount = @cglncrSymbCount

Other Information
@SYMBOL = @cgAddCmdSymb = 2.1.1_Parameters (<@P=> parameter) ¢

@cgGetSymbValAtOff
@cgGetSymbValAtOff s-name offset — s-val | ?

s-name A string stack object.

offset An integer stack object.

s-val A string stack object.

Details
Gets the value (s-val) of a special symbol (s-name) at a specified offset (offset).

s-name 1s the name of a special symbol as defined in the «@P=)> keyword, by the @SYMBOL
command, or by the @cgAddCmdSymb function. Note that s-name is only the name of a special
symbol; it cannot contain other text (eg: «<INPUT: 3» is invalid for s-name, but «<INPUT> is valid).

offset is a positive or negative integer (or zero), n, which indicates the n™ value of s-name from its
nominal value.

s-val is the requested value of the specified special symbol as indicated by offset; if offset is such
that it indicates a non-existent or non-string value, then a null stack object (?) is returned.

Examples
The following illustrations show how the @cgGetSymbValAtO£ff function can be used.

(1) $P=... FRUIT 1 2;
Value := @cgGetSymbValAtOff ("FRUIT" -1);

(2) $P=... FRUIT 1 2;
Value := @cgGetSymbValAtOff ("FRUIT" 3);

(3) <@SYMBOL: [NAME="FRUIT" ARGS=(apple), (orange), (banana)]>
Value := @cgGetSymbValAtOff ("FRUIT" 2);

(4) @cgAddCmdSymb ("FRUIT" ["apple", "orange", "banana]);
NumSymbs := @cgGetSymbValAtOff ("FRUIT" 2);

In examples (1) and (2), assume that the special symbol FRUIT has values apple, orange,
banana, pear, peach. Then Value will contain apple in example (1), because the special
symbol FRUIT at <($P=) indicates the value orange (the second index is 2), but the value at
position —1 relative to that value is apple. For example (2), 3 positions from orange is the
value peach, which is returned in Value.

In examples (3) and (4), Value will contain banana, being 2 values from the nominal value.

Other Information

@cgGetCmdSymbVals = @cgGetSpecSymbVal * @SYMBOL = @cgAddCmdSymb
2.1.1_Parameters (<@P=) parameter) ¢

@cgGetTArgsTree

@cgGetTArgsTree —> kw-args

kw-args A string sequence.

Details

Gets the raw keyword-arguments sequence tree (kw-args) of the keyword template of the current
template file as would be obtained from the @cgGetKWArgs function.

kw-args is a duplicate of the internal keyword-arguments sequence tree, which contains all the
user-supplied or command-supplied template file keyword-arguments specified at the

(ARGS= (...)» or <ARG FILE=> keywords. Note that the <ARGS=(...)» keyword can also be
specified at the @GEN and @POSTGEN commands.

The keyword-arguments sequence tree is an ETAC sequence containing nested sequences for each
matched block corresponding to the keyword template. Each matched and parsed block consists
of a sequence containing one or more subsequences. Each subsequence contains string elements.
The first element in the subsequence is the matched keyword, and the subsequent elements are the
matched arguments or a matched and parsed block.

Example
The following illustration shows how the @cgGetTArgsTree function can be used.

(1) User input: ... ARGS= (CLASS=MyClass DLGBASE) ...
@T={//CLASS= (#c-name, SBase) } {/WNDBASE/DLGBASE} {/MFC BC}
KWArgs := (@cgGetTArgsTree () ;

In example (1), KWArgs will contain the sequence <[["CLASS=", "MyClass", "Base"],
["DLGBASE"], [""11>. The result would be the same if the first line of the example were
(AGEN[... ARGS=(CLASS=MyClass DLGBASE) ...]>.

Additional Information

For details of the structure of kw-args, see paragraph A.5 Output Tree under Appendix A:
Keyword-arguments Specification in the document “The Official ETAC Programming
Language” (ETACProgLang(Official).pdf). ¢

@cgGetWindowsDir

@cgGetWindowsDir — dir-str| ?

dir-str A string stack object.

Details
Get the full path of the system Windows directory (dir-str) or a null stack object (?) if that
directory could not be obtained. dir-str will typically contain «C:\Windows>.

Illegal UTF-16 characters (ie: unpaired Unicode surrogate code points) in dir-str will be replaced
with “?° (question mark). ¢

@cglncrSymbCount

@cgIncrSymbCount s-name

s-name A string stack object.

Details
Increments the symbol counter value of a special symbol (s-name) by one.

s-name is the name of a special symbol as defined in the «@P=) keyword, by the @RSYMBOL
command, or by the @cgAddCmdSymb function. Note that s-name is only the name of a special
symbol; it cannot contain other text (eg: «<INPUT: 3> is invalid for s-name, but «<INPUT» is valid).
The special symbol (s-name) need not be currently defined, in which case the symbol counter
value will become 1 (one).

Related Information
(@cgSetSymbCount

Other Information
@cgGetSymbCount * @SYMBOL = @cgAddCmdSymb = 2.1.1_Parameters (<@P=> parameter) ¢

@cglindentLines

@cgIndentLines str-seq num-pos pad eolchrs
str-seq A string sequence.

num-pos A non-negative integer stack object.
pad A string stack object.

eolchrs A string stack object.

Details

Indents all text lines in a string sequence (str-seq) the specified number of positions (num-pos)
filled with the specified w-char character (pad). Indentation also applies to the sequence
elements containing specified EOL (end-of-line) characters (eolchrs).

An element of str-seq could contain more than one text line, each separated by the string in
eolchrs. For example, the string element "1ine 1\r\nline 2\r\nline 3" (ie:
«line 1%Y1line 2C%Y%1ine 3») contains three text lines if eolchrs is "\r\n" (ie: Cglf).

str-seq will have each text line within each string element modified (indented) by this function.

num-pos 1s a non-negative integer indicating the number of positions to indent the text lines in
sStr-seq.

pad is a string, but only the first character, which must be a UCS-2 (BMP Unicode scalar value)
character, is used to pad the indentation. This will typically be a space character. If pad is an
empty string then no indentation will occur.

eolchrs is a string that separates text lines within str-seq. If each element of str-seq is a single
text line, then eolchrs should be an empty string.

Examples

The following illustrations show how the @cgIndentLines function can be used.

(1) Seg := ["First 1line", "line 1\nline 2\nline 3"];
@cgIndentLines (Seq 3 "*" "\n");

(2) Seq := ["First line", "line 1l::line 2::1ine 3::"];
@cgIndentlLines (Seq 3 "!M™ "::");

(3) Seq := ["\r\n\r\n"];
@cgIndentLines (Seq 3 " " "\r\n");

In example (1), Seqg will end up containing the two elements «<***First line>and
xx*x1ine 1lr**line 2L***1ine3).

In example (2), Seq will end up containing the two elements <! ! !First linejand «!!!

In example (3), Seq will end up containing the single element SpSpSpCgleSp5p5pCaLeSp%55p), that is,
three text lines each containing three spaces.

Other Information
tlindentLines ¢

@cglsOnlyDirPath

@cgIsOnlyDirPath path — bool

path A string stack object.
bool An integer stack object containing a logical boolean value.
Details

Determines (bool) whether a path specification (path) is a directory path only. If the last
character of path is a forward slash or backslash, the function returns true, otherwise it returns
false.

Additional Information
Unicode File Specification ¢

@cglsOnlyFileName

@cgIsOnlyFileName path — bool

path A string stack object.
bool An integer stack object containing a logical boolean value.
Details

Determines (bool) whether a file path specification (path) contains only a file name (and
extension). If the file name and extension part of path is equal to path, the function returns true,
otherwise it returns false. ¢

@cglsRelativePath
@cgIsRelativePath path — bool
path A string stack object.
bool An integer stack object containing a logical boolean value.
Details

Determines (bool) whether a file path specification (path) is a relative path. If path does not
contain a drive part and does not begin with a current directory symbol, <.» (dot), the function
returns true, otherwise it returns false.

Note that the current directory symbol, <.» (dot), is regarded as an absolute path. For example,
«.\MyFile.txt) is regarded as an absolute path.

Examples
The following illustrations show how the @cgIsRelativePath function can be used.

(1) @RegIsRelativePath ("MyPath\\MyFile.txt");
(2) @cgIsRelativePath ('C:\MyPath\MyFile.txt"');

Example (1) returns true, while example (2) returns false. ¢

@cglsStrDblQuoted

@cgIsStrDblQuoted st — bool

str A string stack object.
bool An integer stack object containing a logical boolean value.
Details

Determines (bool) whether a string (s¢r) is delimited by double quote characters ("). If the first
and last characters of str are double quote characters (U+0022), the function returns true,
otherwise it returns false. ¢

@cglsStrinParen

@cgIsStrInParen str — bool

str A string stack object.
bool An integer stack object containing a logical boolean value.
Details

Determines (bool) whether a string (str) is delimited by matching parentheses. If the first and last
characters of str are the parenthesis characters < (» and «)», respectively, the function returns
true, otherwise it returns false. ¢

@cglsStrint
@cgIsStrInt str — bool
str A string stack object.
bool An integer stack object containing a logical boolean value.
Details

Determines (bool) whether a string (str) is in the form of an integer. If stzr is of the form
[{+}]-]digits,

where digits is one or more decimal digits, the function returns true, otherwise it returns false.

.

@cglsStrNegint
@cgIsStrNeglInt st — bool
str A string stack object.
bool An integer stack object containing a logical boolean value.
Details

Determines (bool) whether a string (str) is in the form of a negative integer. If s#r is of the form
-digits,

where digits is one or more decimal digits, the function returns true, otherwise it returns false.

Note the minus sign before digits. ¢

@cglsStrPoslint
@cgIsStrPosInt st — bool
str A string stack object.
bool An integer stack object containing a logical boolean value.
Details

Determines (bool) whether a string (s#r) is in the form of a positive integer. If s#r is of the form
[{+}]digits,

where digits is one or more decimal digits, the function returns true, otherwise it returns false.

Note the optional plus sign before digits. ¢

@cglsStrZerolnt

@cglIsStrZerolInt str — bool

str A string stack object.
bool An integer stack object containing a logical boolean value.
Details

Determines (bool) whether a string (str) is in the form of a zero integer. If st is of the form
[+|-]digits,

where digits is one or more zero digits, the function returns true, otherwise it returns false.

For example, <(-000> returns true. ¢

@cgNewTextArray

@cgNewTextArray — ta-data

ta-data A text array data object.

Details
Creates a new empty fext array data object (ta-data).

The returned fext array data object can be used with the various functions that require a text
array data object. The tsaTextLines member of the data object is an empty string sequence to
contain the actual text array.

See 8.3_Data Object: text array for other members of a text array data object.

Additional Information
8.3_Data Object: text array ¢

@cgParseString
@cgParseString pat str — str-seq | ?
pat A string stack object, or a string sequence.
str A string stack object.

str-seq A string sequence.

Details

Parses a string (str) based on a pattern string and possibly sub-patterns (pat), returning a string
sequence (str-seq) corresponding to the parsed substrings of the string (str).

pat is a pattern string or a sequence containing pattern strings which is\are matched by the whole
of str. Substrings within s¢» matching ‘blocks’ within pat are captured into str-seq as strings. A
block is of the form «<n...>), where n is either 0 (zero) or an integer from 1 to 9. Blocks can be
nested. pat can be an empty string, resulting in str-seq being an empty sequence. The syntax for
the strings in pat is as indicated under the heading Additional Information.

If pat is a sequence, the second and subsequent elements of that sequence contain custom pattern
strings identified by the «<pr>> special characters in the elements of pat. The first custom pattern
in pat (the second element of paft) is custom pattern number 0 (ie: pattern represented by <p0>);

the next custom pattern in pat (the third element of pat) is custom pattern number 1 (ie: pattern
represented by <p1l>), and so on.

Important Note

If pat or any element of it (if pat is a sequence) does not have a valid syntax, the consequence
is unpredictable. @cgParseString does not cater for patterns with an invalid syntax.

str is the string to be parsed.

str-seq can be in either one of two formats. <«<n...>> blocks are used in pat to produce the
contents of str-seq matching those blocks. Format 1: pat contains only <<0...>> blocks. In that
case, str-seq will be a flat string sequence. Format 2: pat contains only «<m...>> blocks, where
m 1is an integer from 1 to 9, inclusive. In that case, str-seq will contain one level of string
subsequences. Block m corresponds to element m of str-seq (note that m cannot be 0 in this case).
str-seq will contain as many elements as the maximum block number in pat; omitted block
numbers in pat will correspond to empty subsequences in str-seq. If a <<m...>> block exists in
pat but there are no matches for that hlock then the corresponding subsequence in str-seq will be
empty.

If the match fails completely, or no blocks exists in pat, then a null stack object (?) will be
returned.

Examples
The following illustrations show how the @cgParseString function can be used.

(1) @cgParseString ("$%{$?<0%% d>}%?" "there are 120 MINUTES in 2 HOURS");
(2) @cgParseString (["$3{S$?2[{<p0>}{<pl>}]11%2?", "<1%% u>", "<3%% d>"]
"there are 120 MINUTES in 2 HOURS");

Example (1) obtains the strings of all runs of one or more digits. The function returns the
sequence <["120", "2"]».

Block 1 in the example (2) obtains the strings of all runs of one or more uppercase characters;
block 2 does not exist so it corresponds to the empty sequence in str-seq; and block 3 obtains the
strings of all runs of one or more digits. <p0> represents the pattern <1%% u>, and <pl>
represents the pattern <3%% " d>. The function returns the sequence <[["MINUTES", "HOURS"],
[1, ["120", "2"]]> corresponding to the three blocks in pat.

Additional Information

See Pattern String Matching under chapter 3 of the “The Official ETAC Programming
Language” document, ETACProgLang(Official).pdf. ¢

@cgPathExists
@cgPathExists path type — bool
path A string stack object.
type An integer stack object, or a null stack object (?).
bool An integer stack object containing a logical boolean value.
Details

Determines (bool) whether a specified type of disk entity (#ype) exists for a path specification
(path).

type can be any one of the following: :#FP PATH FILE: (the entity is a file), : #FP _PATH DIR:
(the entity is a directory), :#FP_PATH VOL: (the entity is a volume), or ? (the entity is a file or
directory).

bool is true if path represents the entity specified by fype, otherwise it is false.

Additional Information
Unicode File Specification ¢

@cgPutStru

@cgPutStrU str offset len rep-str — out-str

str A string stack object.

offset A non-negative integer stack object.

len A non-negative integer stack object.

rep-str A string stack object.

out-str A string stack object.

Details

Replaces a substring at a u-char character offset and length (offset, len) in a given string (str)
with a string (rep-str), returning the modified string (out-str).

offset is a zero-based u-char character offset into str. If offset indicates a character beyond the
last character of s¢r, then out-str will be the same as str.

len 1s the maximum number of u-char characters to be replaced in s¢r beginning at offset. If len
exceeds the remaining characters of str, then only the remaining characters are replaced.

rep-str is the string that replaces the substring indicated by offset and length.

out-str is the modified string after replacement.

Examples
The following illustrations show how the @cgPutStrU function can be used.

(1) @egPutStrU ("hello-ha" 5 1 " ");
(2) @cgPutStrU ("hello-ha" 6 4 "*3");
(3) @cgPutStrU ("hello-ha" 8 4 "*3M)
(4) QcgPutStrU ("hello-ha"™ 1 3 "");
(5) @cgPutStrU ("thumbs\#1F44D#up" 6 2 "*");

(6) @cgPutStrU ("thumbs\#1F44D#up" 7 2 "\#1F34F~green apple#**");

14

(
(
(
(
(
(

Example (1) returns the string <hello hao.

Example (2) returns the string hello-*%.

Example (3) returns the string <hello-ha> because offset is beyond the last character of str.
Example (4) returns the string <ho-hav.

Example (5) returns the string <thumbs*p>. Note that the Unicode supplementary plane code
point U+1F44D (Thumbs Up Sign) is internally represented as a surrogate pair, but is only one
u-char character wide. Because len (2) is the u-char character length, both w-chars (surrogate
pairs) of the character at offset 6, and the following character (u), are replaced.

Example (6) returns the equivalent of the string «thumbs\#1F44D#\#1F34F#**) because the
substring being replaced begins at u-char character offset 7. Note that the text «~green apple>
is ignored by ETAC (such text is an example of an “in-string comment”). ¢

@cgRemoveFileData

@cgRemoveFileData file-path
file-path A string stack object.

Details
Removes a file path (file-path) and its text array data object from the internal file list.

file-path is internally expanded to its full file path specification before being used by this
function.

The ETAC Code Generator maintains data from files in an internal file list, identifying the data
by the full file path specification of those files. This function removes file-path and the
corresponding data from that file list. The disk file is not deleted. If file-path does not exist on
the file list, no action occurs.

Other Information
@cgGetFileData ¢

@cgRemQuotes

@cgRemQuotes in-str — out-str

in-str A string stack object.

out-str A string stack object.

Details

Trims a string (in-str) by removing leading and trailing single or double quotes and then spaces,
leaving the result (out-str) on the object stack.

in-str is a string that may contain leading and\or trailing single-quote (*'” U+0027) or double-
quote (‘" U+0022) characters. Those characters are removed first, then leading and trailing
spaces (U+0020) are removed next.

out-str is the same as in-str but with the said characters removed.

Examples
The following illustrations show how the @cgRemQuotes function can be used.

(1) @chemQuoteS W\ TEesze ger\PV) g
(2) @chemQuoteS "'\"text Str‘\"");

(

(
(3) @cgRemQuotes ("' text str' ");
(4) @cgRemQuotes (" text str ' ");
(5) @cgRemQuotes (" text str '");
(6) @cgRemQuotes ("' 'text str ' '");

In example (1), the input string is <"text str™, and the function returns <text str.

In example (2), the input string is <' "text str'', and the function returns <text str.

In example (3), the input string is <' text str'), and the function returns <text str'.
In example (4), the input string is < text str ' », and the function returns <text str ".
In example (5), the input string is <« text str '), and the function returns <text stm.

In example (6), the input string is <' 'text str ' ">, and the function returns <'text str "».
o

@cgRenameDataFile

@cgRenameDataFile path new-path

path A string stack object.
new-path A string stack object.

Details

Renames an internal data file path (path) to a new path (new-path). No action occurs if the file to
be renamed (path) does not exist in the internal file list. new-path can contain a path to a
different directory or disk than path. This function does not immediately affect disk files until
the data file is written to disk at a later time.

path and new-path are internally expanded to their full file path specification before being used
by this function. The consequence is undefined if new-path is the same as an existing file path in
the internal file list.

The ETAC Code Generator maintains data from files in an internal file list, identifying the data
by the full file path specification of those files. This function merely renames such a file path
specification (path) to the specified one (new-path). The data is written to the disk file specified
by the file path specification before the end of the current ECG session, or at other specified
times.

Additional Information
Unicode File Specification ¢

@cgReplFileFlags

@cgReplFileFlags file-data in-flags — out-flags
file-data A text array data object for a file.
in-flags An integer stack object containing a binary boolean value, or a null stack object (?).

out-flags An integer stack object containing a binary boolean value.

Details

Replaces the internal flags of an individual file (file-data) with specified flags (in-flags),
returning the previous flags (out-flags).

file-data is an ETAC data object representing the internal file data for which the file flags are to
be altered. file-data is typically obtained from a call to the QegGetFileData function.

in-flags are the new flags desired to be set for the file data. :!CGF BACKUP: indicates that a
backup of an existing file by the same name is to be made when the file is written to disk. If
file.ext is the format of the file name specified in file-data, then the backup file name will be
file~backup.ext. If the backup file already exists then it will be overwritten automatically without
warning. Note that only files that are not empty will be backed up. :!CGF READ ONLY:
prevents the file data from being written to disk.

If in-flags is a null stack object (?), then the existing flags in file-data are not replaced; out-flags
will just contain the existing flags.

out-flags are the existing flags in file-data before possibly being replaced.

Note that the following ETAC pre-processor definitions need to be made in the script that calls
this function.

[* Does a backup of written file. *]
::define !CGF BACKUP 0x00000001

[* Read-only file. File is not written to disk. *]
::define !CGF READ ONLY 0x00000002

Examples
The following illustrations show how the @cgReplFileFlags function can be used.

(1) ::define !CGF READ ONLY 0x00000002

FileData := @cgGetFileData ('C:\MyFile.txt"');

Flags := @cgReplFileFlags (FileData ?);

void @cgReplFileFlags (FileData (Flags &and not :!CGF READ ONLY:));
(2) ::define !CGF BACKUP 0x00000001

Flags := @cgReplFileFlags (@cgGetFileData ('C:\MyFile.txt') ?);

if (Flags &and :!CGF BACKUP:) then {...} endif;

Example (1) clears the read-only flag, : !CGF READ ONLY:, within the file data object of the
specified file.

Example (2) gets the flags within the file data object of the specified file, and does an action if
the : |CGF BACKUP: flag is set.

Other Information
(@cegGetFileFlags = @cgSetFileFlags = @cgGetFileData ¢

@cgReplSubStr

@cgReplSubStr pat repl-str in-str — out-str
pat A string stack object, or a string sequence.
repl-str A string stack object, or a string sequence.
in-str A string stack object.

out-str A string stack object.

Details

Replaces all substrings of a string (in-str) that match a pattern string or a sequence containing
pattern strings (pat) with a specified string or strings (rep/-str). Only the parts of in-str that
match the zero-blocks (<0...>) of pat are replaced.

pat is a pattern string or a sequence containing pattern strings, but must not contain any <n...>
blocks where n is greater than 0. If pat does not contain any blocks then it is assumed to be
contained within a single zero-block (ie: <0...>). There can be more than one zero-block in pat
but they must not be nested. If pat is a sequence, then the first element of that sequence is the
main pattern string, the other elements are custom pattern strings beginning with custom pattern
0. The syntax for the strings in pat is as indicated under the heading Additional Information,
except that those strings can contain only <0...> blocks (or no blocks).

Important Note

If pat or any element of it (if pat is a sequence) does not have a valid syntax, the consequence
is unpredictable. @cgReplSubStr does not cater for patterns with an invalid syntax.

A match occurs when at least one substring of in-str matches pat. If no match occurs, out-str will
be the same as in-str, otherwise, out-str will be in-str with the appropriate substrings matching
the zero-blocks in pat replaced with repl-str. 1f repl-str is a string then it will replace all
matching substrings. If repl-str is a sequence, then the strings in it must correspond to at least the
number of matching substrings. Substrings in in-str matching the zero-blocks in pat are replaced
with the corresponding strings in repl-str in the order in which the substrings occur from left to
right.

Examples
The following illustrations show how the @cgReplSubStr function can be used.

(1) @cgReplSubStr ("NUM:<0%% d>" "10" "abcdNUM:24efgNUM: 3hijNUM: 40") ;
(2) @cgReplSubStr ("NUM:<0%% d>" ["7", "66", "204"]

"abcdNUM: 24efgNUM: 3hijNUM:40") ;
(3) @cgReplSubStr ("three" "four" "three people dug three holes");

Example (1) illustrates how @cgReplSubStr works when repl-str is a string ("10"). The first
argument, pat, is matched by three substrings of the third argument, in-str. The three matching
substrings are: (NUM:24), (NUM: 3>, <NUM:40>. The number in each of those substrings matches
the zero-block, <0%% " d>, of pat. The second argument, rep/-str, therefore replaces those
numbers. That is to say, the second argument replaces those substrings matching the zero-block.
In this case, the said numbers are replaced with 10, the second argument. The function,
therefore, returns the string <albbcdNUM: 10efgNUM: 10hijNUM: 10>.

Example (2) is the same as example (1), except that the second argument, rep/-str, is a sequence
of three strings that correspond to the three numbers mentioned in example (1). Those three
numbers, therefore, are replaced by the corresponding three strings in rep/-str. The function
returns the string «abcdNUM: 7e fgNUM: 66hijNUM: 204).

Note that the number of elements of rep/-str must be at least the same as the number of substrings
matching the zero-blocks, otherwise an ETAC error event will occur. In some cases, the number
of matching strings may not be known in advanced, so rep/-str should be a sequence only when
that number can be predicted.

The function in example (3) returns the string «(four people dug four holes), because the
first argument, pat, is equivalent to «<<Othree>).

Additional Information

See Pattern String Matching under chapter 3 of the “The Official ETAC Programming
Language” document, ETACProgLang(Official).pdf. ¢

@cgRevlLines

@cgRevLines in-seq | in-data — in-seq | in-data
in-seq A string sequence.
in-data A text array data object.

Details

Reverses the sequential order of the text lines of a string sequence (in-seq) or of a fext array data
object (in-data) returning the same string sequence or data object with the order of the text lines
reversed.

Examples
The following illustrations show how the @cgRevLines function can be used.

(1) Seq := ["morning", "afternoon", "evening"]; void @cgRevLines (Seq) ;
(2) void @RcgRevlines (@cgGetFileData ("MyTextFile.txt"));

Example (1) reverses the order of the text elements in the sequence Seq, resulting in the same
sequence having been modified to ["evening", "afternoon", "morning").

Example (2) assumes that the specified file exists, and reverses the text line order of an internal
copy of that file. The file is written to disk with the order of the lines reversed before the current
ECG session ends. Note that, in this example, the @cgRevLines function returns the text array
data object of the specified file. ¢

@cgRuUnETACFile

@cgRuUnETACFile etac-code arg-str — rtn-cde
etac-code A string or memory stack object.
arg-str A string stack object.

rtn-cde An integer stack object.

Details

Runs an ETAC (or TAC) file (etac-code) with an argument string (arg-str) as it would be run
from RunETAC.exe.

etac-code is either a file path specification to an ETAC code file to run, or a memory stack object
containing the ETAC code. The ETAC code is such that it would normally be run from
RUnETAC.exe, so it therefore expects a string parameter (arg-str) on the TAC stack.

arg-str is the string argument for the ETAC code specified by etac-code.

If an ETAC error event occurs while the ETAC code is executing, this function returns the TAC
error code (rtn-cde) for that error event, otherwise the function returns : #TAC RTN SUCCESS:.

If rtn-cde is not : #TAC RTN SUCCESS:, then the TAC object stack is restored to the same
condition that it was before the ETAC code was executed. If rtn-code is : #TAC RTN SUCCESS:,
then the object stack is not restored. This allows the ETAC code to return stack objects on the
object stack if so designed.

This function pulls off and saves the dictionaries that are on the TAC dictionary stack, except for
a replicate of the “Main” dictionary, before the ETAC code is run. After the ETAC code has
completed, the saved dictionaries are restored. It is necessary for the function to save and restore

the dictionaries on the dictionary stack to simulate running the ETAC code from RunETAC.exe,
otherwise if the current dictionaries are left on the dictionary stack, the executing ETAC code
could modify them causing unpredictable behaviour after it has completed. Also, the running
ETAC code could itself behave unpredictable if it links into the dictionaries existing before the
call.

Examples
The following illustrations show how the @cgRUnETACFile function can be used.

(1) void Q@RcgRunETACFile ("MyDir\\ShowFile.btac" "InfoFile.txt");
(2) FileData @= &l; FileData += "..."; Rtn := @cgRunETACFile (FileData "");
(3) Rtn := @cgRunETACFile ((@ &1 + "...") "");

Example (1) executes ShowFile.btac directly.

Example (2) creates a memory stack object, initialises it with ETAC script (indicated by the
ellipsis), then executes the ETAC script directly from that memory stack object. The ETAC script
is such as would be capable of being run via RunETAC.exe.

Example (3) is a more concise way of writing the code in example (2).

Additional Information
Unicode File Specification ¢

@cgSeqToStrLines

@cgSeqToStrLines str-seq —> str

str-seq A string sequence.

str A string stack object.

Details
Converts from a string sequence (str-seq) to a string (s¢r) with EOL characters.

str-seq is a string sequence, and each of its elements is appended to a string (s¢7) with the EOL
(end-of-line) characters glp.

Example
The following illustration shows how the @cgSeqToStrLines function can be used.

|(1) @cgSeqToStrLines (["Line 1", "Line 2", "Line 3"]);

Example (1) returns the string «Line 1%Y%Line 2%'Line3) ¢

@cgSetFileFlags

@cgSetFileFlags flags

flags An integer stack object containing a binary boolean value.

Details

Sets the file data flags (flags) affecting all files of the current ECG session. A set value of
:!CGF _NO WRITES: indicates that no internal file data of the current ECG session is to be

written to disk.

Note that the following ETAC pre-processor definition needs to be made in the script that calls
this function.

[* No data i1s written to disk. *]
::define !CGF NO WRITES 0x00000001

Examples
The following illustrations show how the @cgSetFileFlags function can be used.

(1) ::define !CGF NO WRITES 0x00000001
@cgSetFileFlags (: !CGF NO WRITES:);

(2) ::define !CGF NO WRITES 0x00000001

@cgSetFileFlags ((@cgGetFileFlags () &and not :!CGF NO WRITES:));

Example (1) prevents all files of the current ECG session from being written to disk.

Example (2) removes the !CGF NO WRITES flag.

Other Information
@cgGetFileFlags = @cgRepFileFlags ¢

@cgSetSymbCount

@cgSetSymbCount s-name cnt-val

s-name A string stack object.

cnt-val A non-negative integer stack object.

Details
Sets the symbol counter value (cnt-val) of a special symbol (s-name).

s-name is the name of a special symbol as defined in the «@P=) keyword, by the @RSYMBOL
command, or by the @cgAddCmdSymb function. Note that s-name is only the name of a special
symbol; it cannot contain other text (eg: «<INPUT: 3» is invalid for s-name, but «<INPUT) is valid).
The special symbol (s-name) need not be currently defined.

cnt-val is the new counter value of the specified special symbol (s-name). cnt-val must not be a
negative number.

Other Information

@cgGetSymbCount = @cglncrSymbCount * @SYMBOL = @cgAddCmdSymb = 2.1.1_Parameters
(«@P=) parameter) ¢

@cgShowNewDialog
@cgShowNewDialog — bool proc|?
bool An integer stack object containing a logical boolean value.
proc A procedure.
Details

Shows a new uninitialised input dialog box to the user, returning the relevant information (proc)
to generate files via the @cgGenerate function.

bool will be true if the user dismisses the dialog box via the ‘Generate’ button, otherwise if the
dialog box is dismissed in any other way, bool will be false.

proc is an ETAC procedure containing the arguments from the dialog box for use with the
@cgGenerate function. If hool is false, then a null stack object (?) is returned instead of proc.

The dialog box does not actually process template files; it merely allows the user to enter data for
later processing via the @cgGenerate function. Some fields are therefore disabled in the dialog
box.

Example
The following illustration shows how the @cgShowNewDialog function can be used.

(1) Pars := Success := @cgShowNewDialog () ;
if Success then {... @cgGenerate(Pars);} endif;

Example (1) obtains input arguments from the user via a dialog box, which is the same as the
main input dialog box. If the user clicks the ‘Generate’ button on the dialog box, the
@cgShowNewDialog function returns true in Success, and also returns a procedure (in Pars)
containing the user-entered arguments. That procedure can then be used with the RcgGenerate
function to generate the desired files. Note that if Pars is activated, then the top stack objects
will be the raw arguments for the @cgGenerate function; those arguments may be modified if
desired before being used with the @cgGenerate function, although that is not typically done.

Related Information
ceGenerate ¢

@cgSortLines

@cgSortLines in-seq | in-data — in-seq | in-data,
in-seq A string sequence.

in-data A text array data object.

in-seq A string sequence.

in-data, A text array data object.

Details

Sorts the text lines of a string sequence (in-seq) or of a text array data object (in-data) returning
the same string sequence or data object with the text lines in ascending order. in-seq; and
in-data, are in-seq and in-data, respectively, with possibly modified content.

This function uses the “insertion sort” algorithm, and is efficient for an initially nearly sorted
sequence.

To sort the text lines in descending order, call @cgRevLines with the returned value of this
function as the argument.

Examples

The following illustrations show how the @cgSortLines function can be used.

(1) Seq := ["morning", "afternoon", "evening"]; void @cgSortLines (Seq) ;
(2) Seq := ["morning", "afternoon", "evening"];

void @cgRevLines (@cgSortLines (Seq)) ;
(3) void RcgSortLines (@cgGetFileData ("MyTextFile.txt"));

Example (1) sorts the text elements in the sequence Seq in ascending order, resulting in the same
sequence having been modified to ["afternoon", "evening", "morning").

Example (2) sorts the text elements in the sequence Seq in descending order, resulting in the
same sequence having been modified to (["morning", "evening", "afternoon").

Example (3) assumes that the specified file exists, and sorts the order of the text lines of an
internal copy of that file. The file is written to disk with the order of the lines sorted in ascending
order before the current ECG session ends. Note that, in this example, the @cgSortLines
function returns the (ignored) text array data object of the specified file. ¢

@cgStrLinesToSeq

@cgStrLinesToSeq str eolchrs — str-seq

str A string stack object.
eolchrs A string stack object.

str-seq A string sequence.

Details

Converts from a string (str) containing text lines separated by EOL (end-of-line) characters
(eolchrs) to a sequence of text lines (str-seq) without the EOLs.

str is a string that typically contains text lines separated by the string in eolchrs.

eolchrs is a pattern string that indicates how the text lines within sz are separated. For example,
the string "1line 1\r\nline 2\r\nline 3" (ie: <line 1%%1line 2% 1line 3)) contains
three text lines if eolchrs is "\r\n" (ie: %g'f). Note that eolchrs can be <" [{\r\n}\r\n]"> which
checks for Cglf, Cg, and '+ EOL characters.

str-seq is a sequence containing the separate text lines within szr, but without the EOL characters.
If str is an empty string, then str-seq will be an empty sequence. If eolchrs is an empty string,
then str-seq will contain the single element s# if s¢7 is not an empty string.

This function is typically used to extract a sequence of text lines from a text file, as in the
following example:

@cgStrLinesToSeq (mem to str read file "MyTextFile.txt" "\r\n");

Examples

The following illustrations show how the @cgStrLinesToSeq function can be used.
(1) @cgStrLinesToSeq("line 1lline 2line 3" "");

(2) @cgStrLinesToSeq("line 1line 2line 3" "\r\n");

(3) @cgStrLinesToSeq ("" "");

(4) @cgStrLinesToSeq ("" "\r\n");

(5) QcgStrLinesToSeq("line 1\r\nline 2\r\nline 3" "\r\n");

(6) @QcgStrLinesToSeq("line 1l:1line 2:1ine 3:" ":");

(7) RegStrLinesToSeq("line I1\rline 2\r\nline 3" "[{\r\n}\r\n]");

Examples (1) and (2) return a sequence with a single string which is the same as the first
argument to the function (ie: <["1ine 1line 2line 3" D).

Examples (3) and (4) return an empty sequence because the first argument is an empty string.
Examples (5) to (7) return the sequence «["1ine 1", "line 2", "line 3"].

Other Information
@cgSeqToStrLines ¢

@cgTrimStrEOL

QcgTrimStrEOL in-str — out-str

in-str A string stack object.

out-str A string stack object.

Details

Trims a string (in-str) by removing trailing EOL (end-of-line) characters, leaving the result (out-
str) on the object stack.

The EOL characters that are removed from the end of in-str are any sequence of: °; and 'r.

Example
The following illustration shows how the @egTrimStrEOL function can be used.

|(1) @cgTrimStrEOL ("string\r\n\n\r\r");

In example (1), the input string is <string®g'e'¢s%r>, and the function returns <string. ¢

@cgTrimStrSpaces

@cgTrimStrSpaces in-str — out-str

in-str A string stack object.
out-str A string stack object.

Details

Trims a string (in-str) by removing leading and trailing spaces, leaving the result (out-str) on the
object stack.

in-str is a string that may contain leading and\or trailing space characters (U+0020) which are
removed.

out-str is the same as in-str but with the said characters removed. ¢

@cgWriteAllToOne

@cgWriteAllToOne file-path
file-path A string stack object.

Details
Writes the data of all files on the internal file list to the specified (file-path) disk file.

file-path is internally expanded to its full file path specification before being used by this
function.

The ETAC Code Generator maintains data from files in an internal file list, identifying the data
by the full file path specification of those files. This function writes all the file-data of all the
files on that file list to the single disk file specified by file-path. Each block of written data will
be preceded by a text line of the form «****** path), where path is the file path specification on
the internal file list associated with the written file data. If the disk file specified by file-path
already exists, it will be overwritten. Note that “no write” flags associated with file data on the
file list are ineffective. The file will be written as a UTF-8 file (with a BOM signature), unless

the file characters are all a subset of the Windows-1252 character set, in which case the file will
be written as a Windows-1252 file.

This function is typically used for diagnostic purposes to determine the contents of all the files on
the internal file list.

Additional Information

Unicode File Specification

Other Information
(@cgWriteFile ¢

@cgWriteCon
@cgWriteCon msg
msg A string stack object.
Details

Displays a message (msg) to the console window.

The console window can be closed via the ETAC close con command. ¢

@cgWriteFile

@cgWriteFile file-path

file-path A string stack object.

Details
Writes the specified (file-path) internal data file to disk.

file-path is internally expanded to its full file path specification before being used by this
function.

The ETAC Code Generator maintains data from files in an internal file list, identifying the data
by the full file path specification of those files. This function writes the file data associated with
file-path on the file list to the disk file specified by that file path. If all the characters of the file
data are a subset of the Windows-1252 character set, then the file data will be written as a
Windows-1252 file. Otherwise (if not all a subset), the file data will be written in the same UTF
encoding scheme as the original file on disk, or if the file data was not obtained from disk or the
original file was a Windows-1252 file, then the file data will be written as a UTF-8 file with a
BOM signature.

No action occurs if : |CGF_NO WRITES: is set (via the @cgSetFileFlags function) or
: !CGF_READ ONLY: is set (via the @cgReplFileFlags function) for file-path.

If : !CGF_BACKUP: is set for file-path, and the file to be written already exists on disk, a backup
of that disk file is made before the specified file is written. If file.ext is the format of file name
specified in file-path, then the backup file name will be file~backup.ext. If the backup file already
exists then it will be overwritten automatically without warning. :!CGF BACKUP: is set via the
@cgReplFileFlags function.

Additional Information

Unicode File Specification

Other Information
@cegWriteAllToOne ¢

8.3 Data Object: text array

This section describes the ETAC functions that can be used directly with text arrays. The names
of all such functions begin with t1. “t1” stands for “text lines”. These functions can only be
accessed via a text array data object. There are also two data members that begin with “tsa”.
“tsa” stands for “text string array”. Note that the data object contains other private members
that are undefined for the user and must not be accessed.

The data from text files is stored in text array data objects which are kept on an internal file list
indexed by the full file specification of the text file. Text array data objects can also be created
by the template designer for their own purposes.

ECGL functions that involve text array data objects also exist (see the Text Array heading under
8.2.1 Functions by Category).

8.3.1 Data Members

The following boxes contain a description of all the data members of the text array data object.
R means that the member can be read from, and W means that the member can be written to.

tsaEOLChars
tsaEOLChars
value A string stack object. (RW)
Details

Contains the EOL (end-of-line) characters (value) of the text lines in the text array.

value is a string of characters that that is used to delimit the text lines in text data (typically from
a text file). The string can be any characters that are not part of the text lines. The default for
value is the string g's. value cannot contain U+0000 (which is an internal ETAC string
delimiter).

The EOL characters are set to tsaEOLChars automatically when the data of a text file is read
into the trext array data object (only Cgls, Cs, and ' are recognised as EOL characters when reading
file data). When the fext array of a file is written to disk, each text line in that file will be
terminated by value.

When a new text array data object is programmatically created, the programmer should set value
as appropriate.

Other Information
tsaTextLines ¢

tsaTextLines

tsaTextLines
value A string sequence. (RW)
Details

Contains the text array itself (value), which is an ETAC string sequence.

value contains the actual text lines of the fext array. The elements of the string sequence are not
delimited by the EOL (end-of-line) characters contained in tsaEOLChars.

Other Information
tsaEOLChars ¢

8.3.2 Function Summary

The table below contains an alphabetical list of the function members used with text arrays.

Text Array Function Summary

Function Description
tlAppendLines Appends text lines to the end of the text array.
tlDeletelines Deletes a number of contiguous text lines of the fext array.
tlFindMark Returns the line number of a specified line within the text array.
tlGetLines Gets a copy of the text lines of the text array.
tlIndentLines Indents all text lines of the text array.
tlInsertLines Inserts text lines into the text array.

8.3.3 Function Members

The following boxes contain a description of all the function members of the text array data
object. The function members themselves should not be reassigned.

tIAppendLines

tlAppendLines sir-seq

str-seq A string sequence.

Details
Appends text lines (str-seq) to the end of the text array.

Example
The following illustration shows how the tl1AppendLines function can be used.

(1) TArr := QcgGetFileData(...); [* Should check for valid TArr. *]
TArr. tlAppendLines (["yesterday", "today", "tomorrow"]):;

In example (1), the internal file data of the file indicated by the ellipsis will have the three text
lines <yesterday», <today», and <tomorrow> appended to it.

Other Information
(@cgGetFileData ¢

tiDeletelLines

tlDeletelines start-line amount

start-line A positive integer stack object.

amount An integer stack object.

Details

Deletes a number (amount) of contiguous text lines of the text array beginning at and including a
specified line number (start-line). If amount is —1 then the rest of the lines from start-line
(inclusive) are deleted. The first line is line number 1.

Example
The following illustration shows how the tlDeleteLines function can be used.

(1) TArr := @cgGetFileData (...); [* Should check for valid TArr. *]
TArr.tlDeleteLines (5 3]);

In example (1), the internal file data of the file indicated by the ellipsis will have the fifth, sixth,
and seventh text lines deleted.

Other Information
(@cgGetFileData ¢

tIFindMark

tlFindMark start-line pat-type mark-pat cust-pat match-num offset — line-num
start-line A positive integer stack object.

pat-type A string stack object, or a null stack object (?).

mark-pat A string stack object.

cust-pat A string sequence, or a null stack object (?).
match-num A non-zero integer stack object.
offset An integer stack object.
line-num An integer stack object.
Details

Returns the line number (/ine-num) plus an offset (offset) of a specified line (pat-type, mark-pat,
cust-pat, match-num) within the text array.

This function searches the text array for a text line based on a pattern string (or plain string)
specified by mark-pat, along with cust-pat if required. offset is added to the line number of the
found text line, and the sum is returned to the caller.

start-line is a one-based line number of a text line within the fext array, indicating that the search
is to be between that line number and the last text line of the text array inclusively.

pat-type is a string containing a single character (or a null stack object), and determines what part
of each text line of the text array is to be searched. pat-type is as follows (M is mark-pat, and T
is the current text line in the fext array):

Pattern String Types
pat-type Meaning

P implies that M contains a pattern string. The match is for any part of 7.

S implies that M contains a pattern string. The match is for the start (initial) part of 7.
E implies that M contains a pattern string. The match is for the end part of 7.

A implies that M contains a pattern string. The match is for all of 7.

? a null stack object implies that M is a plain string. The match is for all of 7.

The consequence is undefined for any other value of pat-type than shown above.

mark-pat (along with cust-pat) is a pattern string or a plain string which is to be matched by a
text line within the text array between and including the text line indicated by start-/ine and the
last text line of the text array.

cust-pat is a string sequence of custom pattern strings indicated within mark-pat, or a null stack
object if mark-pat does not require custom pattern strings.

match-num 1is a positive or negative integer. It determines which matched text line is to be the
matching line, searching from the text line indicated by start-line (if match-num is positive), or
searching backwards from the end of the text array (if match-num is negative). For example, if
match-num is <-3> then the matching line will be the third last match of mark-pat within the text
array. A value of zero for match-num is invalid.

offset is internally added to the matching line number if there was a match. Note that offsef can
be a negative number. offset is typically zero.

line-num will be the one-based line number of the matched text line within the text array plus
offset, or —1 if there was no match. If there was a match, /ine-num will be limited to the value of
start-line minus one and the number of text lines in the text array, inclusively.

Examples
The following illustrations show how the t1FindMark function can be used. TArr is assumed to
contain a text array data object.

(1) LineNum := TArr.tlFindMark (10 ? "//+MARKER+//" 2 1 0);
(2) LineNum := TArr.tlFindMark (10 ? "//+MARKER+//" 2?2 -1 0);
(3) LineNum := TArr.

{tlFindMark (max 1 (|tsaTextLines| - 4) "S" "$%°'d" ? -3 0);};
(4) LineNum := TArr.tlFindMark (1 "P" "$3%{%<pl><p0>}S$<pl>" [" <%

[<pl><p0>] ">", "[~["<>]1"] 3 -1);

In example (1), the first text line within TArr containing the string <//+MARKER+//> is searched
for, beginning with the tenth line inclusively. If the text line is found, LineNum will contain its
line number, otherwise it will contain the number —1. Note that, because the second argument

(pat-type) is a null stack object, the third argument, mark-pat, is a plain string (not a pattern
string).

Example (2) is the same as example (1), except that the last text line matching </ /+MARKER+/ />
is to be searched for.

In example (3), the third last text line within TArr beginning with at least one digit character is
searched for, beginning with the fifth last line inclusively. If the text line is found, LineNum will
contain its line number, otherwise it will contain the number -1. Note that the first argument of
tlFindMark must not evaluate to an integer less than one. The fifth last line is therefore

expressed by <max 1 (|tsaTextLines| - 4)) to cater for the number of text lines being less
than five.

In example (4), the third text line within TArr containing nested and balanced «<» and «>> blocks
is searched for, beginning with the first line inclusively. If the text line is found, LineNum will
contain its line number minus one, otherwise it will contain the number —1. Note that the pattern
string, mark-pat, uses a custom pattern string sequence, cust-pat.

Additional Information

See Pattern String Matching under chapter 3 of the “The Official ETAC Programming
Language” document, ETACProgLang(Official).pdf.

Other Information
@OUTPUT = @INSERT = @DELETE o

tiIGetLines

tlGetLines start-line end-line — out-seq
start-line A positive integer stack object.
end-line A positive integer stack object.
out-seq A string sequence.

Details

Gets a copy (out-seq) of the text lines of the text array between two line numbers (start-line, end-
line) inclusively.

start-line 1s a one-based line number of a text line within the text array indicating the first text
line to get. The consequence is undefined if start-line indicates a line number before the first line
or after the last line of the text array.

end-line is a one-based line number of a text line within the text array indicating the last text line
to get. The consequence is undefined if end-l/ine indicates a line number before the first line or
after the last line of the text array.

out-seq contains a copy of the text lines between the first and last specified ones inclusively. ¢

tlindentLines

tlIndentLines num-pos pad

num-pos A non-negative integer stack object.

pad A string stack object.

Details

Indents all text lines of the text array a number of positions (num-pos) filled with a character
(pad). Indentation also applies to the text lines containing EOL (end-of-line) characters as
defined by the tsaEOLChars member of the text array data object. Typically, the EOL character
string is <glp.

An element of the fext array could contain more than one text line, each separated by the EOL
characters. For example, the string element "1ine 1\r\nline 2\r\nline 3" (ie:
«line 1C%Yline 2CY%1ine 3)) contains three text lines if the EOL character string is "\r\n"

(ie: CRLF).

num-pos 1s a non-negative integer indicating the number of positions to indent the text lines in the
text array.

pad is a string, but only the first character, which must be a UCS-2 (BMP Unicode scalar value)
character, is used to pad the indentation. This will typically be a space character. If pad is an
empty string then no indentation will occur.

Example
The following illustration shows how the tlIndentLines function can be used.

|(1) TArr.tlIndentLines (3 "*");

In example (1), assume that the text array [«<First line), <line 1%'%1line 2%.Yline 3»] is
contained in the text array data object, TArr, and that the EOL character string of the data object
is glp. The text array will end up containing the two elements «***First line> and
*xx1ine 10L*x*x1line 20glix**x1ine3).

Other Information
tsaEOL Chars = @cglndentLines ¢

tlinsertLines

tlInsertlines start-line in-seq — num-lines

start-line A positive integer stack object.

in-seq A string sequence.

num-lines A positive integer stack object.

Details

Inserts text lines (in-seq) into the text array at a text line position (start-line), returning the
number of lines inserted (num-lines).

start-line 1s a one-based line number of a text line within the text array indicating the position of
the first text line to be inserted. The consequence is undefined if start-line indicates a line
number before the first line or after the last line of the text array.

in-seq contains the text lines to insert into the text array. The existing text lines beginning at
position start-line in the text array are moved to subsequent positions to make room for the
inserted text lines.

num-lines will be the number of lines inserted, that is, the size of in-seq. ¢

Appendix A

HTML Template Files

This appendix is about using HTML code in template files.

A.1 Introduction

The meta-codes in a template file are delimited by angle brackets (“less than” and “greater than”
characters, <<> and <>, respectively). This situation may cause a problem if HTML text is

included in a template file because HTML text also uses the same angle brackets for its tags, and
the ETAC Code Generator may confuse HTML tags with meta-codes. The following solution is

recommended for using HTML (and other files that use angle brackets as delimiters) as template
files.

A.2 HTML in a Template File

HTML text can be used directly in a template file, provided that the follow methods are used.
These methods are not suitable for rendering the template file in an HTML browser.

For a small amount HTML text, the angle brackets that delimit HTML tags need to be replaced
with the corresponding instructions; meta-codes remain unchanged. The following example
illustrates how the HTML text needs to be modified in a template file.

The text below shows an HTML text fragment (with proper HTML tags shown in bold blue) that
is desired to exist in a template file.

<p>I have some
<FRUITS:#1>,
and I like them all.</p>

The text above is rewritten in the femplate file as follows.

<&1lt>p<>>I have some
<<>em<>><FRUITS: #1><<>/em<>>,
and I like them all.<<>/p<>>

Notice that the HTML tag angle brackets have been replaced with the corresponding instructions
(<&1t> and <>>). Assuming that <FRUITS> has values apples, oranges, bananas, the text
above generates

<p>I have some
apples,
oranges,
bananas,

and I like them all.</p>

which is the desired HTML code.

An alternative to the method above is to retain the angle brackets of the original HTML text, but
specify the option IGNORE BAD SYMB in the header block at the «@S=> keyword. The
IGNORE BAD SYMB option ignores special symbols that are undefined or invalid, such as <p> and
. If this alternative is used, special symbols must not be identical to HTML tags. For
example, a special symbol must not be , otherwise the will be replaced by its value;
however, can be used for the special symbol if it is not to be used as an HTML tag.

A.3 HTML in an External File

Substantial HTML text should be put in a separate file, and included into the template file via the
@INSERT command. The following method allows a separate HTML file, for use in a template
file, to be display in an HTML browser. The HTML file will contain (altered) meta-codes, and so
may not be displayed as expected in the browser.

With this method, all meta-codes within the HTML file are enclosed within < [~> and «~]> instead
of the angle brackets. The HTML file is then automatically converted via the cgCvtToAngBraks
function when it is included into the template file.

As an illustration, assume that the text below exists in an HTML file. Note especially that the
angle brackets «<> and «<>» of the meta-codes have been replaced with «[~)> and «~]», respectively.
This allows the HTML file to be displayed in an HTML browser; if the angle brackets of the
meta-codes were not replaced, the file would not have displayed properly in the browser, if at all.

<HTML>

<BODY>

[~QJOIN: []~]

<p>I have some
[~FRUITS: #1~],
and I like them all.</p>
[~@END: [JOIN]~]

</BODY>

</HTML>

Assuming that the text above exists in a file called MyHTML. htm1, the following illustration

shows how to include that file into a template file.
@ECG V1@

@S=IGNORE BAD SYMB
@endhead@

<@INSERT: [PATH="MyHTML.html" SCRIPT=(Q@cgCvtToAngBraks())]>

The option IGNORE BAD SYMB in the header block at the «@S=)> keyword ignores special symbols
that are undefined or invalid within the inserted HTML file, such as <p> and . The
cgCvtToAngBraks function respectively converts <[~> and «~]» back to «<<» and <>) before the
HTML text is inserted via the @RINSERT command.

Note that the @RINSERT command is processed at stage 1. There may be situations where other
processing needs to be done before the HTML file is inserted, therefore, the QRINSERT command
may need to be activated at a later stage. This is accomplished by using the DEFER keyword with
the QINSERT command, as follows.

@ECG V1d
ééIIGNORE_BAD_SYMB
ééndhead@
<@REPROCESS : [1>

<Q@INSERT: [PATH="MyHTML.html" SCRIPT=(@cgCvtToAngBraks ()) DEFER]>
<QEND : [REPROCESS]>

Because the DEFER keyword forces the @RINSERT command to be activated at stage 12, meta-
codes within the HTML file that need activation prior to stage 12 will not be activated unless the
@INSERT command is placed within the @REPROCESS and @END [REPROCESS] commands. The
@REPROCESS command processes the inserted HTML file from stages 4 to 17. In some cases,
even using the @REPROCESS command may not produce the desired result with the DEFER
keyword. In that case a different strategy needs to be undertaken.

Note that if the inserted HTML file contains commands that are spread over more than one line,
then the @egCvtTmplData function will need to be called at «<SCRIPT=), as shown in the
following illustration.

<@INSERT: [PATH="..." SCRIPT=(@cgCvtToAngBraks(); @cgCvtTmplData();)]>

If all the commands in the HTML file are already on a single text line, then @cgCvtTmplData
need not be called.

To prevent <[~> and «<~]> from being converted by @egCvtTmplData, use <[[~&~]~» and

<~ [~&~] 1>, respectively. @cgCvtTmplData will convert <[[~&~]~) to «[<&>~> and <~ [~&~]]»
to «~<&>1>, and the ETAC Code Generator will then convert < [<&>~)> to <[~> and ~<&>]» to <~]>.
Alternatively, «[<&>~> and «~<&>])> can be used directly in the HTML file if desired.

Appendix B

Self-contained ETAC Code Generator

Officially, the ETAC Code Generator is released as a compiled TAC binary instruction file named
ETACCodeGen.btac, along with the ETAC source files, which is part of (and depends upon) the Run
ETAC Scripts package release. The official release of the ETAC Code Generator requires,
therefore, that the Run ETAC Scripts package be already installed. This appendix is about the
self-contained release of the ETAC Code Generator, which does not require Run ETAC Scripts to
be already installed. The self-contained implementation of the ETAC Code Generator itself is
named ETACCodeGen.exe.

LICENCE NOTE

The licence agreement, included within the ETAC Code Generator installation folder, must be
accepted by the person who installed the ETAC Code Generator before the ETAC Code
Generator is permitted to be used or copied in any way. If the licence agreement is not
accepted, then the ETAC Code Generator installation folder must be deleted.

B.1 Introduction

The self-contained implementation of the ETAC Code Generator, ETACCodeGen.exe, can be run
where Run ETAC Scripts is not installed. ETACCodeGen.exe is actually a silent installer that
temporarily installs a TAC binary instruction file (ETACCodeGen.btac) containing the ETAC Code
Generator, along with a portable implementation of Run ETAC Scripts (RunETAC.exe), and
executes that instruction file. The installation is automatically put into a temporary folder, which
is then automatically deleted after the ETAC Code Generator has finished executing. The
temporary installation does not affect the system registry.

The self-contained ETAC Code Generator package is released as a self-extracting ZIP file,
<ETACCodeGenEXE_..._Installer.exe>, which creates a user-specified folder containing
ETACCodeGen.exe and other relevant files, including the licence agreement, documentation, and
some template files.

B.2 System Requirements

The self-contained ETAC Code Generator has the same system requirements as does the Run
ETAC Scripts package, and is therefore only released for the Windows® operating system using
the x86 (32-bit) architecture (it can also run on the x64 (64-bit) architecture) beginning with
Windows® XP. Note that the self-contained ETAC Code Generator package is not released for
other platforms and non-Windows® operating systems. It is expected to operate correctly on any
Windows® operating system compatible with the one mentioned. Also, the ETAC Code Generator
operates with Unicode files.

B.3 Self-contained Installation

The file <ETACCodeGenEXE_..._Installer.exe> will create a directory tree structure in a directory
specified by the user as follows.

ETACCodeGenEXE (default installation directory name, can be renamed during installation)
Documents

ECGTemplates Licence.pdf (licence agreement for the ETAC Code Generator templates)
ETACCodeGenerator.pdf (this document)
ETACCodeGenEXE Licence.pdf (licence agreement must be accepted to use the ETAC Code Generator)

ETACCodeGenTemplates.pdf (describes the files in the Templates directory)
ETACErrorCodes.pdf (lists the ETAC programming language syntax error codes)
ETACOverview.pdf (overview of the ETAC programming language)
ETACProgLang (Official) .pdf (the official definition of the ETAC programming language)
Other
ECGTdef.xml (for use with Notepad++)
Templates
ECGData
ExternTACLibECG. cpp
ExternTACLibECG.def
ECGTSourceFile.ecgt
CPPModsRec.ecgt
CPPSourceFiles.ecgt
DataFileReg.ecgt
ETACForApp.ecgt
ETACMainApp.ecgt
ETACModsRec.ecgt
ExternTACLib.ecgt
MakeEXE.ecgt
MakeExtractor.ecgt
ECGTFile.ico (can be used with template files)
ETACCodeGen.exe (is the self-contained ETAC Code Generator)
ETACCodeGen.ini
MakeECGIni.cmd (creates ETACCodeGen. ini)
ReadMe. txt (read this first)

Documents

ETACCodeGenEXE_Licence.pdf and ECGTemplates_Licence.pdf contain the licence agreement which
must be accepted by the person who performed the installation before the ETAC Code Generator
can be used. If the licence agreement is not accepted, the ETAC Code Generator installation must
be deleted. ETACCodeGenTemplates.pdf describes the files in the Templates folder.
ETACOverview.pdf contains an overview of the ETAC™ programming language, and
ETACProgLang(Official).pdf is the official definition of the ETAC programming language.

Other

ECGTdef.xml is the Notepad++ definition file for syntax highlighting the contents of template files
displayed in the Notepad++ editor window. See chapter 3, Editing Template Files, in the
“ETAC Code Generator Templates” document, ETACCodeGenTemplates.pdf.

Templates

This folder contains the template files which are described in the “ETAC Code Generator
Templates” document, ETACCodeGenTemplates.pdf.

Files

The installer program runs MakeECGIni.cmd automatically which creates the initialisation file
ETACCodeGen.ini. ReadMe.txt contains some initial information for the users of the ETAC Code
Generator. ECGTFile.ico can be used as an icon for template files; the user will need to set up such
usage himself. ETACCodeGen.exe is the ETAC Code Generator program that the user runs to
generate text files.

B.3.1 The Initialisation File

The initialisation file, ETACCodeGen.ini, is initially created automatically by the installation
process to contain references to the installation directory (see 5.2_Initialisation File for more
details about the content of the initialisation file). Whenever the user changes the installation
directory name or path, the user should execute MakeECGIni.cmd to create new references in the

initialisation file to the changed name or path. MakeECGIni.cmd will make a backup of an existing
ETACCodeGen.ini file before changing it, overwriting a previous backup. ETACCodeGen.ini can be
moved to the system Windows directory if desired.

B.4 ETAC Code Generator Execution

ETACCodeGen.exe is actually a silent installer, and when executed it installs and runs a portable
version of the ETAC Code Generator and Run ETAC Scripts in a temporary directory (“folder”),
which is then automatically deleted before ETACCodeGen.exe terminates. The current directory,
while ETACCodeGen.exe is running, is the said temporary directory. Therefore, any files generated
into that temporary directory will be subsequently deleted.

The ETAC Code Generator program, ETACCodeGen.exe, can be run directly, or via a shortcut file.
Either way, ETACCodeGen.exe, will always create an input dialog box.

B.4.1 Direct Execution

ETACCodeGen.exe is executed directly by double clicking it from the Windows® environment. The
input arguments string for the internal ETACCodeGen.btac is:

'INI DIR="exe-dir" AUTOLOG PROMPT TEMPLATE="" ARGS=()'

where exe-dir is the directory containing ETACCodeGen.exe. When executed, ETACCodeGen.exe,
will display the input dialog box. Note that the ‘Output Folder’ field displayed in the input dialog
box will be the temporary directory of the ETAC Code Generator. The user should select a
different directory for generated files, otherwise, if the files are generated into the temporary
directory, they will be automatically deleted. To locate the temporary directory containing the
ETAC Code Generator, click the ‘Output Folder’ button on the input dialog box when it is first
presented.

B.4.2 Command Line Execution

ETACCodeGen.exe can be executed on a command line via a shortcut file or a command file. In
this case, the input arguments string for the internal ETACCodeGen.btac is

'INI DIR="exe-dir" AUTOLOG PROMPT cmd-str'

From within Windows®, the command line is typically entered in a shortcut file to the ETAC Code
Generator (ETACCodeGen.exe) as follows. In the Target entry of the shortcut properties, enter
the following:

"exe-dir \ETACCodeGen.exe" [cmd-str]

where exe-dir is the directory containing ETACCodeGen.exe, and cmd-str is the command line
string arguments specified by the user on the command line. The arguments on the command line
string must include the (TEMPLATE=) and (ARGS=) (or <(ARG_FILE=)) keywords, unless no
arguments are supplied (in which case, <TEMPLATE="" ARGS=()> is the default). In addition, the
arguments for the keywords «GEN_ DIR=), <OUTPUT=), and <LOG=> (if present) should not be
specified as relative paths to avoid generated files or the log file from being created in the
temporary directory. See Command Line Input Arguments for details of cmd-str.

An example of a command line specified by the user is:

...\ETACCodeGen.exe TEMPLATE="ETACMainApp.ecgt" ARGS=() GEN DIR="C:\..."

which will display the input dialog box with the specified parameters.

B.4.3 ETAC Script Execution

The ETAC Code Generator can be executed directly from ETAC script within a template file. The
current directory will be the temporary directory containing ETACCodeGen.btac (existing internally
to ETACCodeGen.exe), and so paths relative to the current directory should not be specified.

Important Note
Do not use exec_tac to run the ETAC Code Generator — the consequence is unpredictable.

The following example illustrates how to execute the ETAC Code Generator from ETAC script
inside a template file. The second argument of @cgRUnNETACFile is only for illustration.

<@SCRIPT: []>

RtnCode :- ?; IniDir :—- ?;
IniDir := (+ "INI DIR='" @cgGetCmdLineArgs().clalIniDirPath "'");
RtnCode := @cgRunETACFile ("ETACCodeGen.btac"
(IniDir + " TEMPLATE='...' ARGS=(...) OUTPUT='C:\\..."™));

if (RtnCode = :#TAC RTN SUCCESS:) then {...} endif;

<@END: [SCRIPT]>

The second argument of @cgRUnETACFile in the example above is the command line input
arguments, which must include the «<TEMPLATE=) and (ARGS=) keywords (see Command Line
Input Arguments). In addition, the arguments for the keywords «GEN DIR=) and <OUTPUT=) (if
present) should not be specified as relative paths to avoid generated files from being created in
the temporary directory. In the example above, IniDir is assigned the <INI DIR=) keyword
with its argument being the directory containing ETACCodeGen.exe as the directory for the
initialisation file. A different initialisation file can be specified if desired.

An ECG session can be executed from within a template file to produce the generated lines into
an ETAC sequence (OutSeq) as illustrated in the following example. As in the preceding
example, file and directory paths should not be specified as relative paths because the current
directory will be the temporary directory. In particular, the fourth argument should not be the
null stack object (?).

<@SCRIPT:[]>
OutSeq :- []; Success :— ?;

Success := @QcgGenerate ("C:\\..." OutSeq "..." "C:\\..." 0);
if Success then {...} endif;

<@END: [SCRIPT]>

Note the double backslash (\\) used in the file paths of the preceding examples. The double
backslash represents a single backslash, and is necessary because the backslash is an escape
character in regular ETAC strings. Alternatively, if single-quoted strings (“raw” strings) are
used, the backslashes must not be doubled.

B.S ETAC Script Debugging

ETAC script, whether existing in a &FNT instruction, on in an @RINSERT, @SCRIPT, QIF, or @EDIT
command, is debugged as described in chapter 2, ETAC Debugger, of the “The Official ETAC
Programming Language” document, ETACProgLang(Official).pdf.

To debug ETAC script, the ETAC Code Generator needs to be started in debug mode via the
ETACCodeGen.exe program after placing breakpoints at suitable positions within the ETAC script.
In the debug window, the ‘Silent Continue’ button needs to be clicked repeatedly until the
debugger pauses at a set break point. Debugging the ETAC script can commence from that point
as described in the aforementioned chapter. Note that breakpoints can be placed within the ETAC
script of &ENT instructions and conditions of @IF commands.

To start the ETAC Code Generator in debug mode, the special keyword (-debug-) needs to be
specified as the first argument on the command line, as in the following illustration.
"...\ETACCodeGen.exe" —debug- TEMPLATE="ETACMainApp.ecgt" ARGS=(...)

During the debugging session, there may be occasions when the response is extremely slow; this
is currently unavoidable.

B.6 Uninstalling the ETAC Code Generator

Because the ETAC Code Generator does not alter the system registry, uninstallation is achieved
simply by deleting the installation directory. Note that if the user associated ECGTFile.ico with
template files, then that association must be broken by the user.

Bibliography

An Overview of ETAC copyright © Victor Vella (2020)
The Official ETAC Programming Language copyright © Victor Vella (2020).

Glossary

C

command
Specially marked text in the template line block that processes groups of template lines, or
groups of text lines that exist in an external file.

See 2.2.5_Commands for more information.

command symbol
A special symbol defined by the RSYMBOL command or by the @cgAddCmdSymb function. A
command symbol and its values exists in an internal list of such symbols separate from the
special symbols specified at the «@P=> keyword of the header block. A command symbol can
have more than one value, and is used like any other special symbol.

continued line
A text line ending with (\%g'p>, \ p>, or (\\'p> in a template line block. A series of continued
lines and the following text line are treated as a single fremplate line.

E

ECG session
The full processing of a single template file. An ECG session can be started via a command
line, the @cgGenerate function, or the @GEN or @POSTGEN commands.

See 5_Operating the ETAC Code Generator for more information.

ECGL
ECGL stands for “ETAC Code Generator Language”. ECGL is a unique sophisticated
declarative template file language, used by the ETAC Code Generator, having capabilities

extended by ETAC scripts. ECGL consists of meta-codes and a standard function library of
ECGL functions.

ECGL function
An ETAC function intrinsically defined as part of a standard function library for ECGL. An
ECGL function begins with the characters @cg.

error event
The situation that occurs when the action of an ETAC command or operator can no longer
proceed. In such a case, the ETAC interpreter intercepts the action and takes appropriate
action which typically consists of ending the main ECG session, unless the error event is
trapped by appropriate ETAC code.

ETAC comment
A comment token as defined for the ETAC™ programming language. An ETAC comment
consists of the two sequences of characters « [*++*) and «<*:=-*]), and the text between them.
ETAC comments are ignored by the ETAC Code Generator.

ETAC script
ETAC program code that is in human readable and writable text form. A file containing only
ETAC script typically has an extension of ‘etac’. Note that the term “ETAC script” is used in
the same sense as the word “code”, as in “ETAC script code”.

G

generated file
A disk file generated or modified by the ETAC Code Generator.

generated line
A final text line generated by the ETAC Code Generator requiring no more processing.

H

header block
The header block is the first section of a template file containing information for the ETAC
Code Generator for processing the template line block following that first section. A header
block ends with the text line <@endhead®@.

input arguments
Operational information supplied by the user (typically via a dialog box or the command line)
for the ETAC Code Generator to initiate the creation of generated files.

See 5.1 _Command Line for details of the input arguments.
input point

An imaginary point that exists between characters, before the first character, or after the last
character in a template line during the processing of that template line.

instruction
Specially marked text in the template line block that modifies (an internal copy of) the
template line in which the instruction exists.

See 2.2.2 Instructions for more information.

K

keyword template
A keyword template is a template specification, against which template arguments are
matched and parsed, as defined by the keyword-arguments system. The keyword template for
a template file is specified at the «@T=> keyword of the header block.

See Appendix A: Keyword-arguments Specifications in the document “7The Official ETAC
Programming Language” (ETACProgLang(Official).pdf) for details of a template specification.

L

line continuation character
The backslash (\) at the end of a continued line is called the line continuation character.
During processing of a template file, the line continuation characters are removed (but the
end-of-line characters remain), and a contiguous series of continued lines, along with the text
line that follows, are treated as a single template line.

M

meta-code
The special symbols, instructions, and commands in a template file are collectively called
meta-codes.

multi-line
A template line that can generate more than one output line. A multi-line is identified by the
existence of hash (#) characters in the special symbols of a template line.

O

output file
The file that receives the default generated lines of a template file, including the generated
lines of QOUTPUT commands that do not specify an output file (at <PATH=>). This is the main
file produced by the ETAC Code Generator. The generated text produced by the ETAC Code
Generator may exist entirely within the output file, or text may also be generated to other
files as specified by the commands within the template files. The data in the output file is, in
fact, a modified copy of the template line block after all processing has been completed.

The output file will be written as a UTF-8 file (with a BOM signature), unless the file
characters are all a subset of the Windows-1252 character set, in which case the file will be
written as a Windows-1252 file.

output line
A resulting text line of a particular operation of a meta-code. An output line may undergo
further processing before becoming a generated line.

output point
An imaginary point that exists between characters, before the first character, or after the last
character in an output line during the processing of a template line.

P

pattern string
A pattern string is a string which is composed of characters to be matched literally and
special characters that indicate predefined patterns to be matched or used to indicated how the
pattern matching process is to be performed. Pattern strings are unique to, and defined by,
the ETAC™ programming language. Pattern strings are analogous to “regular expressions” in
other programming languages.

See Pattern String Matching under chapter 3 of the “The Official ETAC Programming
Language” document, ETACProgLang(Official).pdf, for more information including the syntax of
a pattern string.

protection instruction
An instruction that immediately encloses a meta-code so that the meta-code is not processed
when it would normally be processed; the meta-code is thus “protected”. When a protection
instruction is itself activated, it transforms itself into the enclosed meta-code.

S

special symbol
Text within the template line block that conforms to a certain syntax, and which gets replaced
with other text (the special symbol’s ‘value’) during the processing of template lines.

See 2.2.1_Special Symbols for more information, including the syntax of a special symbol.

string block
This is any part of a text string delimited by matching parentheses « () >, square brackets <[],
braces <{ }», double quotes «<"», or single quotes «'>. A string block includes the said
delimiter characters. The three bracket delimiters can be nested. Quoted substrings within
bracket delimiters are skipped. Backslash escaped quote characters within single and double
quoted string block are ignored. For example, the highlighted substrings within
<is there ((anybody) " ("out) there, tell 'me\' if' there is»
are string blocks.

T

template arguments
Template arguments are keywords and their arguments, supplied by the user, that match the
keyword template of a template file. Template arguments are used as values for special
symbols.

ETAC comments within template arguments are logically replaced with one space, unless the
comments are within a pair of double quotes or double-angle quotes. For example, the
template arguments string, <KW=my [*comment*]argl, arg2" [*cmt*]"™, is logically
equivalent to «(KW=my®pargl, arg2"[*cmt*]">. However, (KW=my« [*comment*]»argl,
arg2" [*cmt*]"» is logically equivalent to «<KW=my [*comment*]argl, arg2" [*cmt*]"».
Note that the outer double-angle quotes are ignored, but the text in-between those quotes
remains.

Backslashes (<\») in source arguments that are outside of string blocks are ignored and the
character following a backslash is accepted literally, for example, escaped ETAC comments
outside of string blocks are retained as in this example with only one source argument,
«KW=my\ [*comment*\]one\ ,arg>. The backslashes are automatically removed, leaving
«(KW=my [*comment*]one, arg> as the effective source argument. Without the backslashes in
the example, the comment is replaced with a single space, and the keyword will have two
source arguments instead of one.

See A.3 Source String Syntax under Appendix A: Keyword-arguments Specification in
the document “The Official ETAC Programming Language” (ETACProgLang(Official).pdf) for
more details about the syntax of source arguments.

template file
A special text file, for use with the ETAC Code Generator, acting as a model for generating
or modifying one or more text files for desired purposes. A template file contains fragments
of the generated text, meta-codes, and possibly ETAC script, that describe how those
fragments are to be produced into the generated files.

A template file can be a Windows-1252, UTF-8, UTF-16, or UTF-32 file. If a template file is
a UTF file, it is highly recommended that the file has a BOM signature (including for
UTF-8).

See 1.5_Overview of a Template File and 2_The Template File for more information.

template line
A text line within the template line block, that directly participates in producing generated
lines. Commands can also be considered to be template lines in some cases. @SCRIPT
command blocks are not usually considered to be template lines for the purpose of producing
generated lines. A template line can contain meta-codes, or it may be a plain text line.

template line block

All the text lines in a template file that are beneath the «@endhead@> text line (ie: that follow
the header block).

See 2.2_The Template Line Block for more information.

text array
An ETAC string sequence (tsaTextLines) encapsulated by a particular ETAC data object
(the “text array data object”) that contains members for manipulating that sequence.

See 8.3_Data Object: text array for more information.

U

u-char
A Unicode scalar value. A u-char is equivalent to a UTF-32 code unit. The size of a u-char
in an ETAC string is two or four bytes (one or two w-chars, respectively). However, a u-
char size as a character is considered to be one unit in length. Note that a surrogate pair is
one u-char (even though it is two w-chars). A surrogate code point is not a u-char (it is a
w-char).

W

w-char
A Unicode code point in the BMP (Basic Multilingual Plane). A w-char is equivalent to a
UTF-16 code unit. The size of a w-char in an ETAC string is two bytes. However, a w-char
size as a character is considered to be one unit in length. Note that a surrogate code point is a
w-char.

	Preface
	Contents
	Tables and Diagrams
	Document Conventions
	Introduction
	1 Overview
	1.1 General Features
	1.2 Requirements
	1.3 Overview of the ETAC Code Generator
	1.4 The Input and Template Arguments
	1.5 Overview of a Template File

	2 The Template File
	2.1 The Header Block
	2.1.1 Parameters
	2.1.2 Header Block Example

	2.2 The Template Line Block
	2.2.1 Special Symbols
	2.2.2 Instructions
	2.2.3 Instruction Summary
	2.2.4 Instruction Definitions
	2.2.4.1 &
	2.2.4.2 &C
	2.2.4.3 &DATE
	2.2.4.4 &DEL
	2.2.4.5 &FNT
	2.2.4.6 &HPAR
	2.2.4.7 &MI
	2.2.4.8 &OMIT
	2.2.4.9 &sq
	2.2.4.10 &dq
	2.2.4.11 &bs
	2.2.4.12 &n
	2.2.4.13 &t
	2.2.4.14 &v
	2.2.4.15 &b
	2.2.4.16 &r
	2.2.4.17 &f
	2.2.4.18 &a
	2.2.4.19 &U+
	2.2.4.20 &x
	2.2.4.21 &eol
	2.2.4.22 &lp
	2.2.4.23 &rp
	2.2.4.24 &lb
	2.2.4.25 &rb
	2.2.4.26 &ls
	2.2.4.27 &rs
	2.2.4.28 <
	2.2.4.29 >
	2.2.4.30 &<>

	2.2.5 Commands
	2.2.6 Command Summary
	2.2.7 Command Definitions
	2.2.7.1 @CMT
	2.2.7.2 @DELETE
	2.2.7.3 @DO_FOR
	2.2.7.4 @DO_WITH
	2.2.7.5 @EDIT
	2.2.7.6 @END
	2.2.7.7 @EVAL
	2.2.7.8 @GEN
	2.2.7.9 @IF
	2.2.7.10 @INSERT
	2.2.7.11 @JOIN
	2.2.7.12 @OUTPUT
	2.2.7.13 @POSTGEN
	2.2.7.14 @REPROCESS
	2.2.7.15 @SCRIPT
	2.2.7.16 @SECTION
	2.2.7.17 @SYMBOL

	3 Processing Stages
	3.1 Meta-code Processing Stages

	4 Input Dialog Box
	4.1 Dialog Box Details

	5 Operating the ETAC Code Generator
	5.1 Command Line
	5.2 Initialisation File
	5.3 Executing from ETAC Script
	5.4 Executing from ECGL Commands

	6 Programming the ETAC Code Generator
	6.1 Using ETAC Script
	6.2 Intrinsic Global Functions
	6.3 Text Array Functions
	6.4 Debugging ETAC Script

	7 ETAC Code Generator Examples
	7.1 Example 1
	7.2 Example 2
	7.3 Example 3
	7.4 Example 4
	7.5 Example 5
	7.6 Example 6

	8 EGCL Function Reference
	8.1 Global Variables
	8.1.1.1 cg
	8.1.1.2 @cgECGVrsnID
	8.1.1.3 @cgMainTemplate
	8.1.1.4 @cgSectTemplData

	8.2 General Functions
	8.2.1 Functions by Category
	8.2.2 Function Summary
	8.2.3 Function Definitions
	8.2.3.1 @cgAddCmdSymb
	8.2.3.2 @cgAddFileData
	8.2.3.3 @cgAddLogEntry
	8.2.3.4 @cgCreateFile
	8.2.3.5 @cgCreateNewFile
	8.2.3.6 @cgCvtRelativePath
	8.2.3.7 @cgCvtTmplData
	8.2.3.8 @cgCvtToAngBraks
	8.2.3.9 @cgDateTimeFormatted
	8.2.3.10 @cgDelDuplLines
	8.2.3.11 @cgExitECG
	8.2.3.12 @cgExtractInnerStr
	8.2.3.13 @cgFindString
	8.2.3.14 @cgFormatStr
	8.2.3.15 @cgGenerate
	8.2.3.16 @cgGetCmdLineArgs
	8.2.3.17 @cgGetCmdSymbVals
	8.2.3.18 @cgGetDefaultOutPath
	8.2.3.19 @cgGetFileData
	8.2.3.20 @cgGetFileFlags
	8.2.3.21 @cgGetHeaderPar
	8.2.3.22 @cgGetInputBoxArgs
	8.2.3.23 @cgGetKWArgs
	8.2.3.24 @cgGetKWSyntax
	8.2.3.25 @cgGetNumSymbVals
	8.2.3.26 @cgGetSpecSymbVal
	8.2.3.27 @cgGetStrU
	8.2.3.28 @cgGetSymbCount
	8.2.3.29 @cgGetSymbValAtOff
	8.2.3.30 @cgGetTArgsTree
	8.2.3.31 @cgGetWindowsDir
	8.2.3.32 @cgIncrSymbCount
	8.2.3.33 @cgIndentLines
	8.2.3.34 @cgIsOnlyDirPath
	8.2.3.35 @cgIsOnlyFileName
	8.2.3.36 @cgIsRelativePath
	8.2.3.37 @cgIsStrDblQuoted
	8.2.3.38 @cgIsStrInParen
	8.2.3.39 @cgIsStrInt
	8.2.3.40 @cgIsStrNegInt
	8.2.3.41 @cgIsStrPosInt
	8.2.3.42 @cgIsStrZeroInt
	8.2.3.43 @cgNewTextArray
	8.2.3.44 @cgParseString
	8.2.3.45 @cgPathExists
	8.2.3.46 @cgPutStrU
	8.2.3.47 @cgRemoveFileData
	8.2.3.48 @cgRemQuotes
	8.2.3.49 @cgRenameDataFile
	8.2.3.50 @cgReplFileFlags
	8.2.3.51 @cgReplSubStr
	8.2.3.52 @cgRevLines
	8.2.3.53 @cgRunETACFile
	8.2.3.54 @cgSeqToStrLines
	8.2.3.55 @cgSetFileFlags
	8.2.3.56 @cgSetSymbCount
	8.2.3.57 @cgShowNewDialog
	8.2.3.58 @cgSortLines
	8.2.3.59 @cgStrLinesToSeq
	8.2.3.60 @cgTrimStrEOL
	8.2.3.61 @cgTrimStrSpaces
	8.2.3.62 @cgWriteAllToOne
	8.2.3.63 @cgWriteCon
	8.2.3.64 @cgWriteFile

	8.3 Data Object: text array
	8.3.1 Data Members
	8.3.1.1 tsaEOLChars
	8.3.1.2 tsaTextLines

	8.3.2 Function Summary
	8.3.3 Function Members
	8.3.3.1 tlAppendLines
	8.3.3.2 tlDeleteLines
	8.3.3.3 tlFindMark
	8.3.3.4 tlGetLines
	8.3.3.5 tlIndentLines
	8.3.3.6 tlInsertLines

	Appendix A: HTML Template Files
	A.1 Introduction
	A.2 HTML in a Template File
	A.3 HTML in an External File

	Appendix B: Self-contained ETAC Code Generator
	B.1 Introduction
	B.2 System Requirements
	B.3 Self-contained Installation
	B.3.1 The Initialisation File

	B.4 ETAC Code Generator Execution
	B.4.1 Direct Execution
	B.4.2 Command Line Execution
	B.4.3 ETAC Script Execution

	B.5 ETAC Script Debugging
	B.6 Uninstalling the ETAC Code Generator

	Bibliography
	Glossary

