
The ETAC Compiler
1 August 2020

Copyright © Victor Vella (2018-2020)
All rights reserved

TM

ETAC Compiler Program
Version: 2-0-6-ena

Victor Vella

Contents

Contents

Contents

Document Conventions

1. Introduction

2. Command Line Keywords

3. ETAC Compiler Operations

3.1 Conversion to Binary File

3.2 Conversion to Text Instructions

3.3 Producing Pre-processor Output

3.4 Conversion to Pre-processed Packed File

3.5 Conversion to Unprocessed Packed File

3.6 Syntax Checking Only

4. The Syntax Error and Warning Window

5. Source File Viewer

6. List of Error and Warning Codes

Glossary

Other Related ETAC Documents
ETAC_Preliminaries.pdf Preliminaries before using ETAC
ETACOverview.pdf An Overview of ETAC
ETACProgLang(Official).pdf The Official ETAC Programming Language
RunETAC.chm Run ETAC Scripts Help
ETACWithCPP.pdf ETAC: Interacting with C++
ETACCompiler.chm ETAC Compiler Help
ETACErrorCodes.pdf ETAC Compilation and Run-time Error Codes
FunctionsETACScriptLib.pdf Functions ETAC Script Library

Legal Information
ETAC, (the ETAC logo), and (the ETAC Compiler logo) are unregistered trademarks (™) of
Victor Vella for computer software incorporating an implementation of a computer programming
language. There may be other owners of the “ETAC” trademark used for other purposes.

MS-DOS and Windows are registered (®) or unregistered (™) trademarks of Microsoft Corporation.

Unicode is a registered trademark (®) of Unicode, Inc. in the United States and other countries.

This document is copyright © by Victor Vella (2020). All rights reserved. Permission is hereby
granted to make any number of exact electronic copies of this document without any remuneration
whatsoever. Permission is also granted to make annotated electronic copies of this document for
personal use only. Except for the permissions granted, and apart from any fair dealing as permitted
under the relevant Copyright Act, no part of this document may be reproduced or transmitted in any
form or by any means without the express permission of the author. The copyright of this document
shall remain entirely with the original copyright holder.

The author of this document shall not be liable for any direct or indirect consequences arising with
respect to the use of all or any part of the information in this document, even if such information is
inaccurate or in error. The information in this document is subject to change without notice.

Document Conventions

Document Conventions

The following symbolic conventions are used in this document.

Symbol Meaning

‹x› separates x as a unit of information from the surrounding text.

[x] means that x optional.

(x) groups x as a unit.

x|y means that only x or y applies, but not both (could have more than two options).

{y}x means that if x is not present, then y is the default.

… represents omitted text (as usual).

text maroon coloured italic text is a link to the text’s definition.

The ETAC Compiler

This document is for version 2-0-6-ena of the ETAC Compiler program (ETACCompiler.exe).

(Australian English)

1. Introduction
ETAC™ (pronounced: E-tack) is a syntactically simple but extremely versatile dictionary and stack
based interpreted script programming language. ETAC has basic support for the full Unicode ®
codespace (U+0000 to U+10FFFF). However, the support is only up to the Unicode scalar value level;
character strings are not normalised. ETAC supports only strict conformance to the UTF-8, UTF-16,
and UTF-32 encoding schemes; unpaired surrogate code points are not supported.

The ETAC Compiler program converts ETAC code files from one form to another, and can do detailed
syntax checking on ETAC text script files. An ETAC text script file can be a Windows-1252 or
Unicode file (UTF-8, UTF-16LE, UTF-16BE, UTF-32LE, or UTF-32BE). Note that it is not necessary
to compile ETAC text script files to execute them.

An ETAC code file can be in one of the following forms:

1. Plain text as a regular ETAC (or TAC) script file. (extensions: *.etac or *.tac)

2. Pre-processed and compressed ETAC text script file (ETAC packed script). (extension: *.ptac)

3. Compressed TAC binary file (containing TAC binary instructions). (extension: *.btac)

The ETAC Compiler program can convert ETAC code from any one of the above forms to any other.
Original ETAC source code is in the form (1) above. However, converting ETAC script from plain text
to another form can yield certain advantages. A TAC binary file, (3), can load slightly quicker than a
text ETAC file, (1) or (2), since no parsing and syntax checking is done. But the main advantage of a
TAC binary file is that the inclusion files would have all been processed and the results are included in
the binary file. However, a TAC binary file cannot normally be debugged unless it is first converted to
a text file (conversion from (3) to (1)). Such a conversion, however, will be in the form of ETAC text
instructions rather than high-level code. Compressed ETAC text script files (2) are typically used as
inclusion files. The advantage here is that the nested inclusion files specified in the original inclusion
file are also compressed within the same packed file resulting in only one inclusion file. Files of the
form (2) can be debugged but will have had the comments stripped out.

The ETAC Compiler program can also combine any number of ETAC code files (in any mixture of the
three forms above) into a single output file (again, in any one of the three forms). When ETAC code
files are combined, they are first internally converted to the output form and then merely concatenated.
This requires that the contents of the original input files be designed for such concatenation.

The syntax checking done by the ETAC Compiler program is more detailed than the one done by the
Run ETAC Scripts program, and includes warning checks. Only ETAC code files of the form (1) and
(2) can be syntax checked. However, code files of the form (2) should have already been syntax
checked. A list of errors and warnings for the code file (input file) being syntax checked is displayed
in a dialog box. When the user selects an error or warning, the offending token is highlighted in
another window which displays the whole (slightly converted) input file containing that token. The list
of errors and warnings, along with their line numbers in the original input file, can be exported to an
RTF (Rich Text Format) or TAB-separated text file for later viewing. The ETAC Compiler program
can be directed to filter out warnings that have occurred with the same input file in the previous
session. However, the ETAC Compiler program only remembers the error code, input file, and line
number of a warning, and so that feature is unable to distinguish more than one warning of the same
warning code on the same text line in the same input file. Nevertheless, this is still a useful feature,
enabling the user to see only the latest warnings of an input file. Note that the said feature only filters

warnings, not errors, since errors will cause the script to fail if run. Also note that the ETAC Compiler
program checks at least those same errors as are checked by the Run ETAC Scripts program, but those
errors are checked in more detail by the ETAC Compiler program.

The input instructions to operate the ETAC Compiler program are in the form of keyword-arguments
(keywords and their arguments) that allow any number of groups of ETAC code files to be processed
independently one after another. The keyword-arguments can be specified directly or in a text file.

2. Command Line Keywords
The ETAC Compiler program can be executed either from the MS-DOS® or Windows® environment. In
either case, a command line consisting of keywords and their arguments needs to be specified.

There are two forms of the command line keywords.

Form 1

[ARGS_PATH=arg-file-path, …] [{ED_ARGS} | NO_ED_ARGS] [START | ABOUT]

Form 2

[{BINARY} | PACK | EXPACK | INSTR | PPROC | (SYNTAX [F: warn-filt-file])] [CDIR=dir-path]
[INC_DIRS=incl-dir-file] [PPDEFS=pp-defs] SRC_FILES=src-file-path, … [OUT_FILE=out-file-path]
[LIST_INCFILES] [QUIET_RUN] [{EXIT_MSG} | NO_EXIT_MSG] [{AUTO_LOG} | LOG_FILE=log-file-
path]

The full details of the keywords and their arguments are specified in the file ETACCompiler.chm under
‹Command Line Arguments → Command Syntax›.

3. ETAC Compiler Operations
The ETAC Compiler program can perform six operations. The following sections describe the various
operations and the corresponding types of output file (and their default extensions) produced by the
ETAC Compiler program. Any of these output files can be used as an input file in another compilation
session.

3.1 Conversion to Binary File

Keyword: BINARY Extension: btac

An ETAC code file can be converted to a compressed TAC binary file containing TAC binary
instructions. The output file is not readable in a text editor.

3.2 Conversion to Text Instructions

Keyword: INSTR Extension: tac

An ETAC code file can be converted to a text file containing TAC text instructions in the form
‹type:argument;› where type is any one of: INT, DEC, STR, LBC, LBO, CMD, OPR, MRK, MEM, NUL, or
EXE, and argument is an appropriate argument for type. The output file is readable in a text editor.
The file can be executed by the Run ETAC Scripts program.

3.3 Producing Pre-processor Output

Keyword: PPROC Extension: etac

Produces a pre-processed file for diagnostics purposes. The output file may not be usable as ETAC
script because pre-processor definition references are resolved later than the pre-processing stage. All
pre-processor directives are processed. Comments are removed and white-spaces are reduced to a
single space. The output file is readable in a text editor. If the input file is a TAC binary file, then the
output file will contain TAC text instructions, and the default file extension will be tac.

3.4 Conversion to Pre-processed Packed File

Keyword: PACK Extension: ptac

Produces a pre-processed packed script (ETAC packed script) file. All pre-processor directives are
processed and also all pre-processor definitions are moved to the beginning of the output file.
Comments are removed and white-spaces are reduced to a single space. The output file is not readable
in a text editor. If the input file is a TAC binary file, then the output file will contain packed TAC text
instructions. The file can be executed by the Run ETAC Scripts program, but this is not typically done.

3.5 Conversion to Unprocessed Packed File

Keyword: EXPACK Extension: ptac

Produces a packed script (ETAC packed script) file with all ‘::include’ instructions unconditionally
expanded (thus the ‘EX’ in ‘EXPACK’). The input files are not pre-processed. Comments are removed
and white-spaces are reduced to a single space. The output file is not readable in a text editor. If the
input file is a TAC binary file, then the output file will contain packed TAC text instructions. The file
can be executed by the Run ETAC Scripts program, but this is not typically done.

3.6 Syntax Checking Only

Keyword: SYNTAX Extension: N/A

Checks the input files for syntax errors and warnings only. The input files are pre-processed before
they are checked. Shows warnings and fatal errors. Fatal errors are the errors that are checked for
each time the script is run. Warnings are produced only with this option. The token causing the
selected error or warning is highlighted in a window. If the input file is a TAC binary file, then no
action will occur. No output file is produced.

NOTE: Some errors in an ETAC script file are detected when the file is executed. The ETAC Compiler
program does not execute ETAC code files, so those errors will not be detected by the ETAC Compiler
program but will be detected by the Run ETAC scripts program.

4. The Syntax Error and Warning Window
This window appears for the syntax checking operation (SYNTAX) only. During the syntax checking
process, whenever syntax errors or warnings occur, a dialog box will appear showing the path of the
source file that was syntax checked. Underneath that path, a list of the errors and warnings is shown in
a grid. The programmer can select the current error (E) or warning (W) to display in the source viewer,
or use the First, Previous, Next, or Last buttons to move the selection to the desired position. The
check box at the beginning of each error or warning line is for the programmer to use as desired.
Typically, the check boxes are used to tick errors or warnings that have been fixed by the programmer.
A summary of the selected error or warning is displayed in the lower text box. A pink background
indicates an error, and a blue background indicates a warning. More information about that error or
warning can be displayed by clicking the Info button. The error and warning list can be exported to
an RTF (rich text format) file or a TAB-separated text file along with the error messages (for RTF
only) by clicking the Export button.

The diagram below illustrates the syntax and error warning window.

 SOURCE
endif;

};

pop link 1 @Self;
};

start_local; [* Create a local dictionary for the main program.*]
ProgArgStr :-; [* Assign the stack argument string (not used). *]

[* PROGRAM *]
---:START;

Fnts := @NewData$ ("etacFunctions");

UserIFace. {uifOpenMainUIF$ (); void uifShowMainUIF$ ();};
if (DialogTest.dtDialogObj != ?) then

{DialogTest.dtDialogObj.@EndDlg$ (0);}
endif;

end_local;

[* Delete the "DBM" dictionary. *]
dict_stack; pop; obj_stack;

Note that some kinds of errors can only be detected after other kinds of errors have been fixed. The
ETAC text script should therefore be rechecked for syntax errors after all previous errors have been
fixed.

5. Source File Viewer
This window appears for the syntax checking operation (SYNTAX) only. This window displays the
source file of the error or warning selected in the syntax error and warning window. The script token
causing the selected error or warning is highlighted in the window. An error is shown in red, and a
warning is shown in blue.

The diagram below illustrates a source file viewer window with an error script token highlighted in
red. Note that, for technical reasons, the displayed file may show spaces (and the ‘$’ character) that do
not exist in the source file being syntax checked.

6. List of Error and Warning Codes
A list of error and warning codes with descriptions can be found in the document ETAC Compilation
and Run-time Error Codes (ETACErrorCodes.pdf). That document contains the same descriptions that are
displayed by the ETAC Compiler program.

Glossary

Glossary

A
activate

a) When referring to a script token that creates a stack object, the script token is converted to a
stack object by the TAC processor and then the object’s nominal action is performed.

b) When referring to a script token that does not create a stack object, an appropriate action is
performed depending on the type of script token.

c) When referring to a stack object, the stack object is temporarily copied by the TAC processor
and then the copied object’s current action is performed.

B
binary interpreter

Part of an ETAC interpreter that processes TAC binary instructions.

C
command

A script token having the syntax of a comop identifier. A command can be in script form (eg:
‹FilePath›, ‹tac.var›, ‹#abc%03?›, ‹sub:›, ‹.xyz-3›) or instruction form (eg:
‹CMD:FilePath›, ‹CMD:tac.var›, ‹CMD:#abc%03?›, ‹CMD:sub:›, ‹CMD:.xyz-3›).

comop
A command or operator (com mand op erator), or a stack object created by such a command or
operator.

comop identifier
A consecutive sequence of displayable characters with the following restrictions. The sequence
must not :

 begin with a digit or colon character,

 begin with an uppercase character and have a colon in fourth character position (eg: ‹Abc:d›
is invalid),

 be in the form of an integer or decimal number (eg: ‹23›, ‹+23›, ‹2.3›, ‹-2.3›, ‹+2.3e5›,
‹.3E+2›, ‹0.3› are invalid),

 be ‹+›, ‹-›, ‹*›, ‹/›, ‹^›, ‹=›, ‹!=›, ‹<›, ‹>›, ‹<=›, ‹>=›, ‹++›, ‹?›,

 contain whitespaces or the characters ‹'›, ‹"›, ‹,›, ‹;›, ‹[›, ‹]›, ‹{›, ‹}›, ‹(›, ‹)›.

A comop identifier cannot contain characters above U+00FF. Comop identifiers are case-sensitive.

Examples of comop identifiers: ‹FilePath›, ‹tac.var›, ‹#abc%03?›, ‹sub:›, ‹.xyz-3›.

copy (of a stack object)
To reproduce a stack object and its embedded value into another stack object (replacing that other
stack object) such that the reproduced value and the original value are identical. The embedded
value of a stack object that has a resource value is an internal reference to that resource value.
Therefore, if such a stack object is copied, only its reference is reproduced not its resource value.
Consequently, if a stack object that has a resource value is copied to another stack object, both
objects will share the same resource value.

current action
A property of a stack object that indicates its current action when activated.

D
dictionary

A stack object having a resource value consisting of a list of internally indexed dictionary items.
The dictionary item having the highest index value in its dictionary is called the ‘topmost’
dictionary item.

dictionary item
An item in a dictionary consisting of a label having the syntax of a comop identifier and a stack
object. A dictionary item need not be unique to any dictionary; a dictionary can contain more than
one identical dictionary item, and any other dictionary can contain the same identical item. A
dictionary item within a dictionary is uniquely identified by an internal index. When a dictionary
item is added to a dictionary, the item gets the next index value in the dictionary. The dictionary
item having the highest index value in its dictionary is called the ‘topmost’ dictionary item.

dictionary stack
One of the three stacks in the ETAC interpreter that can contain only dictionaries.

E
embedded value (of a stack object)

The value of a stack object that is exclusively associated with that object (eg: integer, decimal, and
string stack objects have embedded values). An embedded value is not shared with other stack
objects, and can therefore be changed independently of the value of those other objects.

ETAC code
This is ETAC script or TAC binary instructions. A file containing ETAC code typically has an
extension of etac, tac, ptac, or btac.

ETAC expression
A consecutive sequence of one or more script tokens as defined for ETAC expression in the
document ETACProgLang(Official).pdf.

ETAC interpreter
A computer program that processes ETAC code. An ETAC interpreter essentially consists of a
script interpreter, a binary interpreter, and a TAC processor.

ETAC packed script
ETAC text script that has been pre-processed or expanded, and compressed. A file containing
ETAC packed script is a binary file, typically having an extension of ptac.

Note that the term “ETAC packed script” is used in the same sense as the word “code”, as in
“ETAC packed script code”.

ETAC script
This is ETAC text script or ETAC packed script. A file containing ETAC script typically has an
extension of etac, tac, or ptac.

Note that the term “ETAC script” is used in the same sense as the word “code”, as in “ETAC script
code”.

ETAC statement
A consecutive sequence of one or more script tokens as defined in the document
ETACProgLang(Official).pdf for ETAC statement.

ETAC text script
ETAC program code that is in human readable and writable text form. This includes TAC text
instructions. TAC text script containing comops in the form of variable identifiers is also ETAC
text script. A file containing ETAC text script typically has an extension of etac (or ‹tac› if the
file contains only TAC text script).

Note that the term “ETAC text script” is used in the same sense as the word “code”, as in “ETAC
text script code”.

I
input file

An ETAC code file to be processed by the ETAC Compiler program.

instruction form (of a script token)
A script token in the form of a TAC text instruction.

L
lexical analyser

Part of the script interpreter that converts lexical tokens to logical tokens which are then syntax
checked, modified, and rearranged as necessary.

lexical parser
Part of the script interpreter that parses ETAC script into lexical tokens.

lexical token
The smallest unit of information, in the form of text characters, that can be identified by the lexical
parser.

logical token
A combination of one or more lexical tokens and internal tokens regarded as a conceptual unit by
the lexical analyser for the purpose of syntax checking and compiling a programming language.

N
nominal action (of a TAC object)

The default action of a TAC object.

O
object stack

One of the three stacks in the ETAC interpreter that can contain any type of TAC object. This is
the main stack used by ETAC code.

operator
A script token containing the syntax of a comop identifier. An operator could be in script form
qualified by a preceding ‹&› (eg: ‹&AddVect›, ‹&tac.var›, ‹&#abc%03?›, ‹&add:›, ‹&.xyz-3›) or
instruction form (eg: ‹OPR:AddVect›, ‹OPR:tac.var›, ‹OPR:#abc%03?›, ‹OPR:add:›,
‹OPR:.xyz-3›). An operator is used in an operator expression.

operator expression
A consecutive sequence of script tokens involving an operator and its operands. There are two
forms of operator expressions. The script form, where the operands are delimited by parentheses,
and the instruction form, where the operands are delimited by the start_op and end_op
commands. The operator of an operator expression can exist anywhere within its operand’s
delimiters.

Typically, when an operator expression is activated, its operands get activated first leaving the
operator arguments on the object stack, then the operator gets activated and processes those
arguments, returning the resultant stack object on the object stack. For example, the operator
expression ‹(3 + 4 5)› will return 12 on the object stack. That operator expression can be
written as: ‹(+ 3 4 5)›, ‹(3 4 5 +)›, ‹(3 4 + 5)›, ‹end_op 3 4 &add 5 start_op›,
‹start_op; 5; 4; &add; 3; end_op;›. Note that the operator expressions in all but the last
example are activated from right to left; the operator expression of the last example is activated
from left to right.

An operator expression can contain nested operator expressions as some or all of its operands, but
each operator expression must contain exactly one operator at the top level.

operator stack
One of the three stacks in the ETAC interpreter that can contain only operator stack objects.

output file
The ETAC code file that is output by the ETAC Compiler program.

R
resource value

The value of a stack object that can be shared with other stack objects of the same type —
sequence, procedure, dictionary, and memory stack objects have sharable resource values. A
resource value is internally referenced by the stack object; that reference itself is the object’s
embedded value (the reference itself is not available to the programmer, only the value being
referenced, the resource value, is available).

S
script form (of a script token)

A script token not written in the form of a TAC text instruction. This is a more natural and
intuitive style of expressing script tokens.

script interpreter
The part of the ETAC interpreter that processes an ETAC script. The script interpreter consists of
a lexical parser, a script pre-processor, and a lexical analyser.

script pre-processor
The script pre-processor is that part of the script interpreter that is responsible for pre-processing
ETAC text script.

script token
A consecutive sequence of one or more lexical tokens regarded as a unit for the purpose of defining
the syntax and semantics of the ETAC programming language.

stack object
Any one of a number of certain groups of TAC objects.

T
TAC binary instruction

A binary form of a TAC text instruction. TAC binary instructions exist in binary files. Any ETAC
code can be compiled into TAC binary instructions by the ETAC Compiler program. A file
containing TAC binary instructions typically has an extension of btac.

TAC object
An entity that has the capability of existing on a TAC stack, and consists of a type and
corresponding value along with an indicator of some suitable action to perform.

TAC processor
Part of the ETAC interpreter that creates a TAC object from each logical token passed to it then
activates the TAC object according to its type.

TAC stack
An object stack, dictionary stack, or operator stack.

TAC text instruction
A human readable text instruction of the form ‹type:argument› where type is any one of: INT, DEC,
STR, LBC, LBO, CMD, OPR, MRK, MEM, NUL, or EXE, and argument is an appropriate argument for
type. TAC text instructions may exist in ETAC text script files or in files containing only TAC text
instructions. The ETAC Compiler program can compile ETAC code to TAC text instructions. A
file containing TAC text instructions alone typically has an extension of tac.

TAC text script
TAC program code that is in human readable and writable text form. This includes TAC text
instructions. TAC text script does not contain ETAC program code (ETAC expressions or ETAC
statements other than assignment or allocation statements). A file containing TAC text script
typically has an extension of tac.

Note that the term “TAC text script” is used in the same sense as the word “code”, as in “TAC text
script code”.

V
variable identifier

A consecutive sequence of characters beginning with an alphabetic character (‘a’ to ‘z’ or ‘A’ to
‘Z’ or exotic Latin characters such as ‘Ä’), an underscore (_), or an ‘at’ character (@). The
subsequent characters are alphanumeric (alphabetic or ‘0’ to ‘9’) or underscore. Note that, by
convention, variable identifiers beginning with an ‘at’ character, or an underscore followed by an
alphabetic character or underscore, are reserved for system use. An ETAC programmer, therefore,
is limited to defining variable identifiers containing alphanumeric characters and underscores, with
the first character being an alphabetic character, or the first two characters being an underscore
followed by a digit character. In addition, none of the strings “if”, “then”, “else”, “endif”,
“when”, “is”, “endwhen”, “do”, “repeat”, “from”, “to”, “step”, “with”, “of”, “while”,
“exitdo”, “exitdo_if”, “donext”, “donext_if”, and “void” can be a variable identifier.
Variable identifiers are case-sensitive.

The exotic Latin characters are: ª, ², ³, µ, ¹, º, À, Á, Â, Ã, Ä, Å, Æ, Ç, È, É, Ê, Ë, Ì, Í, Î, Ï, Ð, Ñ, Ò, Ó,
Ô, Õ, Ö, Ø, Ù, Ú, Û, Ü, Ý, Þ, ß, à, á, â, ã, ä, å, æ, ç, è, é, ê, ë, ì, í, î, ï, ð, ñ, ò, ó, ô, õ, ö, ø, ù, ú,
û ,ü ,ý, þ, ÿ. Those characters should be used only if necessary.

	Contents
	Document Conventions
	1. Introduction
	2. Command Line Keywords
	3. ETAC Compiler Operations
	3.1 Conversion to Binary File
	3.2 Conversion to Text Instructions
	3.3 Producing Pre-processor Output
	3.4 Conversion to Pre-processed Packed File
	3.5 Conversion to Unprocessed Packed File
	3.6 Syntax Checking Only

	4. The Syntax Error and Warning Window
	5. Source File Viewer
	6. List of Error and Warning Codes
	Glossary

