
An Overview of ETAC
1 August 2020

Copyright © Victor Vella (2018-2020)
All rights reserved.

 TM

Other Related ETAC Documents
ETAC_Preliminaries.pdf Preliminaries before using ETAC
ETACProgLang(Official).pdf The Official ETAC Programming Language
RunETAC.chm Run ETAC Scripts Help
ETACWithCPP.pdf ETAC: Interacting with C++
ETACCompiler.pdf The ETAC Compiler
ETACCompiler.chm ETAC Compiler Help
ETACErrorCodes.pdf
FunctionsETACScriptLib.pdf

ETAC Compilation and Run-time Error Codes
Functions ETAC Script Library

Legal Information
ETAC and (the ETAC logo) are unregistered trademarks (™) of Victor Vella for computer software
incorporating an implementation of a computer programming language . There may be other owners of
the “ETAC” trademark used for other purposes.

MS-DOS and Windows are registered (®) or unregistered (™) trademarks of Microsoft Corporation.

Unicode is a registered trademark (®) of Unicode, Inc. in the United States and other countries.

PostScript is a registered trademark (®) of Adobe Systems Incorporated.

This document is copyright © by Victor Vella (2020). All rights reserved. Permission is hereby
granted to make any number of exact electronic copies of this document without any remuneration
whatsoever. Permission is also granted to make annotated electronic copies of this document for
personal use only. Except for the permissions granted, and apart from any fair dealing as permitted
under the relevant Copyright Act, no part of this document may be reproduced or transmitted in any
form or by any means without the express permission of the author. The copyright of this document
shall remain entirely with the original copyright holder.

The author of this document shall not be liable for any direct or indirect consequences arising with
respect to the use of all or any part of the information in this document, even if such information is
inaccurate or in error. The information in this document is subject to change without notice.

Contents

Contents

Contents

Document Conventions

1. Introduction

2. ETAC Code Sample

3. Features of ETAC

4. Sequential Reverse-flow Activation

5. ETAC – Operational Overview

6. Stack Objects

7. The TAC stacks

7.1 The Object Stack

7.2 The Dictionary Stack

7.3 The Operator Stack

8. Comments

9. Variables

9.1 Allocating Variables

9.2 Assigning Variables

9.3 Retrieving the Value of a Variable

9.4 Global and Local Variables

10. Object Types

10.1 Numbers and Booleans

10.2 Characters and Strings

10.3 Memory Objects

10.4 Sequences

10.5 Dictionaries

10.6 Data Objects

10.7 Procedures

10.8 Functions

10.9 Other Object Types

11. Operator Expressions

12. Flow Control

12.1 Conditionals

12.1.1 If-then ETAC Statement

12.1.2 If-then ETAC Function

12.1.3 If-then Commands

12.1.4 Choice ETAC Statement

12.1.5 Choice Commands

12.2 Iterations

12.2.1 ETAC Iteration Statement

12.2.2 Command Iterations

12.3 Exiting Code Blocks

13. Object-oriented Programming

14. Data Input and Output

15. External Code Execution

16. Derived Syntax

Bibliography

Glossary

Document Conventions

Document Conventions

The following symbolic conventions are used in this document.

Symbol Meaning

‹x› separates x as a unit of information from the surrounding text.

x··· means zero, one, or more of the same kind as x.

[x] means that x optional.

(x) groups x as a unit.

x|y means that only x or y applies, but not both (could have more than two options).

… represents omitted text (as usual).

X···XH X···X represents a number in hexadecimal notation (X is a hexadecimal digit).

U+x represents a Unicode code point where x is in hexadecimal notation.

text maroon coloured italic text is a link to the text’s definition.

An Overview of ETAC

This document is for version 1-1 of the ETAC Programming Language implemented in program
RunETAC.exe version 3-0-6-ena.

(Australian English)

1. Introduction
ETAC™ (pronounced: E-tack) is a syntactically simple but extremely versatile dictionary and stack
based interpreted script programming language. ETAC is designed as a programming tool for use by
programmers, not as an ornamental work of art for computer academics to marvel at. As a
consequence, ETAC is an easy and intuitive language to use with no gimmickry or ornamental features.
However, because ETAC is extreme versatile, and being a dictionary and stack based language, it is
designed for experienced professional programmers (meaning programmers having a professional
attitude). The language is not designed with the restrictions to cater for amateur programmers. The
ETAC programming language is not based on any other programming language.

The ETAC programming language is a high-level syntactic enhancement of the TAC (pronounced:
tack) programming language (which was not publicly released). TAC operates by sequentially
activating text tokens from a file in conjunction with three object stacks one of which contains
dictionaries of defined token words. Such a language that sequentially activates text tokens is called a
“token activated language” or “TAL” for short. TAC is an acronym for Token Activated Code.
Instead of merely activating tokens from left to right, as is the case for other TALs, TAC activates
programmer-determined groups of tokens sequentially from left to right, but the tokens in each group
are activated from right to left (“reverse-flow”). Such a system is called “sequential reverse-flow
activation” (explained in more detail in this document). A TAC program, therefore, is not strictly
written in postfix notation (unless the programmer wants to), but in groups of tokens with prefix
notation activated in reverse. Such a system can be enhanced to incorporate a high-level syntactic
structure without sacrificing the versatility of a TAL. The result of such an enhancement is that a TAC
program could be written using any combinations of high-level syntax (as is typical of traditional high-
level block structured languages) and TAL type syntax (as is typical of languages such as PostScript ®
and FORTH) in a seamless manner. ETAC incorporates the said high-level syntactic enhancement of
TAC, and is an acronym for Enhanced Token Activated Code.

ETAC has basic support for the full Unicode® codespace (U+0000 to U+10FFFF). However, the
support is only up to the Unicode scalar value level; character strings are not normalised. ETAC
recognises only strict conformance to the UTF-8, UTF-16, and UTF-32 encoding schemes; unpaired
surrogate code points are not supported. For certain functionalities or parts thereof, only UCS-2 (BMP
Unicode scalar value) characters are supported.

An ETAC program is written in a single-byte text file (Western European Windows® code page 1252)
or Unicode® text file (UTF-8, UTF-16LE, UTF-16BE, UTF-32LE, UTF-32BE), which is interpreted
directly by the Run ETAC Scripts program (RunETAC.exe). Since ETAC is a stack-based language, the
ETAC programmer is responsible for maintaining the TAC stacks (especially the object stack).

RunETAC.exe can be executed either from the MS-DOS® or Windows® environment via a command line.
From within Windows®, the command line is typically entered in a shortcut file. Note that ETAC is
not released for other platforms or operating systems — it is only released for the Windows® operating
system using the x86 (32-bit) architecture (can also run on the x64 (64-bit) architecture) beginning
with Windows® XP. Also, ETAC is released only in the (Australian) English language. The help file
(RunETAC.chm) for Run ETAC Scripts contains full details on how to run an ETAC program.

This document presents an overview of the ETAC programming language for those who want to gain a
general idea of the nature of the language. This overview is NOT THE SPECIFICATION of the ETAC

programming language, and does not contain all the features and details of the language. To
understand this document properly, the reader needs to have a general knowledge of computer
programming and, in particular, an understanding of the basic concepts of dictionary and stack based
programming languages.

2. ETAC Code Sample
For those who cannot wait to see what ETAC text script looks like, an ETAC code sample (without
explanation) for illustrative purposes is presented below. Notice that the code is in the form of
traditional block structured style syntax, but keep in mind that ETAC is a dictionary and stack based
language (note the pop and swap commands on the tenth line, which are typical commands of a stack-
based programming language). Comments are shown in green, and ignored by the ETAC interpreter.
Incidentally, the bold blue text represents some of the syntactic enhancements of ETAC over TAC.

[* Function Definitions *]
[* Determines if a sub-string exists in a string sequence. *]
FindString :- fnt:(pStrSeq[*str-seq*] pStr[*str*]) [* => bool *]
{
RtnVal :- false; [*rtn*]
SrcStr :- ?;

 do with SrcStr of pStrSeq while not RtnVal
 {
 RtnVal := (pop swap find_str pStr SrcStr != -1); [* Tenth line. *]
 };

 RtnVal; [*RETURN*]
};

[* Splits a string sequence at a line number and character offset. *]
SplitLines :- fnt:(pTextLines[*str-seq*] pLineNum[*int*] pCharOff[*int*])
{
ExtrLine :- ?;

 ExtrLine := pTextLines%[pLineNum] := extr_str 0 pCharOff pTextLines%[pLineNum];

 if (|pTextLines| = pLineNum) then
 {pTextLines +:= ExtrLine;}
 else
 {pTextLines<%[(pLineNum + 1)] := ExtrLine;}
 endif;
};

[* Function Calls *]
TextLines :- ["A string here", "Another one", "The final string"];
Found := FindString(TextLines "one");
SplitLines(TextLines 2 7);

The function SplitLines (shown in the example above) can be written as an ETAC procedure in
typical stack-based syntax without using variables, as shown below.

[* Splits a string sequence at a line number and character offset. *]
SplitLines :- [* str-seq line-num-int char-off-int => - *]
{
 copy 2; swap; get_elm; copy_any 4; extr_str 0; copy_any 3; swap; copy_any 5; put_elm;

 copy_any 3; copy_any 3; size; swap; pop; eq;
 if_else {mk_seq 1; roll -1 3; add2 1; insert;} {swap; add2; roll -1 3; pop;};

 pop; pop;
};

[* Function Call *]
TextLines :- ["A string here", "Another one", "The final string"];
SplitLines TextLines 2 7;

This second example of SplitLines is significantly more difficult to read and write than the first
example of SplitLines. In fact, writing and debugging stack-based style code without using
variables could take up to ten times longer than writing and debugging the same code in high-level
block structured style code using variables. And using stack-based syntax is not necessarily more
efficient to execute than using the equivalent high-level block structured syntax. For this reason,
ETAC text script is typically written in high-level block structured syntax. Note, however, that ETAC
text script can be written seamlessly as a mixture of both styles of coding.

To further illustrate the syntactic versatility of the ETAC programming language, consider a function,
Factorial, to calculate the factorial of an integer. The function is defined in two ways. The first
way uses the recursive method in a traditional block structured style syntax. The code uses a parameter
and a local variable. A programmer not familiar with the ETAC programming language would not be
able to tell that the code is written in a dictionary and stack based language.

[* Traditional block structured language form of the factorial function. *]
Factorial :- fnt:(pNum[*int*]) [* => factorial-int *]
{
Num :- pNum;

 if (pNum = 0) then
 {pNum := 1;}
 endif;

 if (pNum > 1) then
 {Num := Factorial((Num - 1));}
 else
 {Num := 1;}
 endif;

 (pNum * Num); [*RETURN*]
};

The second way to define the Factorial function uses a procedure definition without using any
parameters, local variables, or the dictionary stack (other than for storing the actual procedure itself).
It uses only the object stack. This code runs the most efficiently; it does not use the recursive method.
The factorial factors (1, 2, …, n) are all pushed onto the object stack first, then multiplied together.

[* Stack-based language form of the factorial function using the object stack only. *]
Factorial :- [* int => factorial-int *]
{
 (* 1 1 do_for {} 1 1 swap); [*RETURN*]
};

As can be seen from the illustrations above, the ETAC programming language is, arguably, the first of
an evolutionary step of dictionary and stack based token activated programming languages, capable of
full traditional high-level block structured syntax with the versatility and efficiency of a token
activated stack-based language.

3. Features of ETAC
Some of the noteworthy features of ETAC are:

1. Uses sequential reverse-flow activation .

2. An operator can be placed in any position within the parenthesis of an operator expression
(‘non-fix’ notation).

3. ‘if’, ‘choice’, and ‘iterative’ command structures can be modified at run-time. The structure of
accessing sequences of multiple depth can also be modified at run-time.

4. Any variable can have any type of value at any time, including another variable as value.

5. The size of sequences can change dynamically, and the sequences can have any mixture of
elements including other sequences.

6. Capable of full traditional high-level block structured language style syntax, as well as
traditional stack-based language style, or any mixture of both.

7. Can construct sequences and procedures at call-time (of a procedure).

8. Can internally create ETAC text script and execute it in a new ETAC session which shares
command and operator definitions with the main ETAC session.

9. Can compile ETAC script into binary form for convenience (but is not required) via the ETAC
Compiler program.

10. Contains an internal interactive debugger for visually tracing the activation of script tokens in
ETAC scripts when running in debug mode.

In addition, a C++ computer programmer can extend the native set of commands and operators via
external TAC libraries (implemented as dynamic linked libraries). The ETAC interpreter contains an
internally implemented standard TAC library. An ETAC program can also execute C++ application
program functions, which allows an application program to use ETAC as a macro language via a
special ETAC dynamic linked library (AppETAC.dll).

Details of the features listed above (and other features) are presented in the rest of this document.
However, not all the features of the ETAC programming language are presented. The official
definition of the ETAC programming language is presented in the document ETACProgLang(Official).pdf.

4. Sequential Reverse-flow Activation
To understand how an ETAC program operates, it is essential to understand the concept of sequential
reverse-flow activation.

In a traditional TAL (a token activated language similar to the PostScript® and FORTH programming
languages), the tokens of a script written in such a language are activated from left to right. For
example, to perform the calculation of a mathematical expression like ‹2 + 3 × 5›, a (hypothetical) TAL
script might contain something like

3 5 mult 2 add

This pushes the numbers 3 and 5 onto the stack then multiplies those top two numbers (3 and 5) and
adds the result to the pushed third number (2), leaving the result (17) on the stack. The order of the
operations are strictly from left to right using postfix notation. With sequential reverse-flow
activation, the order of operation is determined by the programmer, as illustrated by the equivalent
script fragments below.

(1) mult 5 3; add 2;

(2) 3; mult 5; add 2;

(3) 3; add 2 mult 5;

(4) add 2 mult 5 3;

(5) 3; 5; mult; 2; add;

Each of the five examples above is an alternative way of performing the same calculation. The tokens
in each example are separated into groups each of which ends with a ‘marker token’ (the semicolon).
Each group is called a token statement. The list of token statements are performed from left to right
sequentially, but within each token statement, the tokens are activated from right to left (“reverse-
flow”). So, in example (1), the number 3 is pushed onto the stack, followed by the number 5, then the
two numbers are multiplied (mult) together leaving the result (15) on the stack. That ends the
activation of the first token statement. Next, the number 2 is pushed onto the stack, then that 2 and the
previous result (15) are added (add) together, leaving the number 17 on the stack. That ends the
activation of the second token statement. The other examples operate in a similar manner; each
example effectively operates in the same way. Notice that the script in example (4) can be regarded as
using strictly prefix notation, and the script in example (5) can be regarded as using strictly postfix
notation.

A TAL using sequential reverse-flow activation is neither necessarily strictly written in postfix
notation nor strictly written in prefix notation. It is said to be written in ‘non-fix notation’. One
advantage in using sequential reverse-flow activation in a TAL is that the tokens can be arranged to be
more easily understood as groups of token statements using prefix notation. Example (4), above, is
easier to understand than example (5) or the original example. Another advantage is that a suitably
designed interpreter can internally convert high-level block structured syntax to token statements in
prefix notation. For illustration purposes only, the high-level data member selection statement
‹MyData.Member;› would be internally converted to the token statement ‹SELECT MyData Member;›,
and the high-level member function call statement ‹MyData.Fnt(10, "hello");› would be internally
converted to the token statement ‹DATA MyData {CALL Fnt;} 10 "hello";›. SELECT, DATA, and
CALL would be internal commands known only to the interpreter. The conversions can be more
complicated than shown in those illustrations. The ETAC interpreter uses a similar scheme to
internally convert high-level syntax to token statements in prefix notation.

It is important to note that the tokens within a token statement are processed from right to left by the
ETAC interpreter. This implies that, for example, in a token statement such as ‹Cmd 21 "string"
5.6;›, the topmost stack object on the object stack before Cmd is activated is 21 not 5.6. In other
words, the order of stack objects from top to bottom on a TAC stack is represented by the order of the
tokens from left to right in a token statement. For example, a command that concatenates three strings
and leaves the result on the object stack would have its input arguments and output result documented
as ‹[* str1 str2 str3 => str *]›, where str1, str2, and str3 represent the input arguments
with str1 representing the topmost string stack object, and str representing the output result (again,
with the topmost string stack object presented on the left in case there is more than one output object).

5. ETAC – Operational Overview
Readable code conforming to the ETAC programming language typically exists in one or more text
files written by an ETAC programmer. The ETAC text script in a file is in the form of script tokens,
most of which represent stack objects. There are script tokens that represent integer and decimal
numbers, strings, commands and operators, memory blocks, markers, sequences of stack objects, and
null stack objects. The ETAC interpreter consists of a script interpreter, a binary interpreter, and a
TAC processor. The script interpreter reads, pre-processes, and parses all the script tokens in the
ETAC text script, checks for correct syntax, then passes each script token (with a few exceptions) to the
TAC processor. The TAC processor creates a stack object from each script token passed to it then
activates that stack object according to its type. A stack object carries out one of a number of
predefined actions when it gets activated.

The TAC processor contains three TAC stacks: the object stack (where most of the action occurs), the
operator stack, and the dictionary stack. An action can cause a stack object to be pushed onto one of
the TAC stacks, activate other stack objects, or create other stack objects based on existing stack
objects. A sequence of stack objects can be created, and that sequence is itself a stack object. Thus,
subsequences of stack objects can be created. The elements of a sequence of stack objects can be
activated.

A certain class of stack objects (comops) can contain a name. The names of such stack objects are held
in a dictionary on the dictionary stack, and each name is associated with a stack object (which can
contain a sequence of stack objects). When such a named stack object gets activated, its name is found
in a dictionary item on the dictionary stack, and the associated stack object or sequence gets activated.
In this way, more complex stack objects can be built up from less complex ones.

Variable allocation and type checking is done at run-time, and variables are not declared as having
specific types. All data and processes defined in ETAC by a programmer are encapsulated in stack
objects that contain values. ETAC text script can be pre-processed via pre-processor directives.

6. Stack Objects
A stack object is an entity that includes the following two properties: a type and a corresponding value.
All programmer data in ETAC exists in stack objects. A stack object normally resides on a TAC stack,
but can exist temporarily in the ETAC interpreter.

The following table lists the different types of stack objects and their values.

Type Value

Integer An integer from –2,147,483,648 to 2,147,483,647.

Decimal A decimal number from ±2.2250738585072014 × 10–308 to
±1.7976931348623158 × 10308 or 0.0 (zero).

String A consecutive sequence of Unicode® characters possibly containing escape codes.

Sequence An internal reference to any number (including zero) of indexed stack objects
understood as a unit.

Procedure An internal reference to a sequence whose elements get activated.

Command A name having the syntax of a comop identifier.

Operator A name having the syntax of a comop identifier.

Memory An internal reference to a block of memory.

Dictionary An internal reference to a dictionary.

Mark A special internal integer from 0 to 7.

Null The internal integer zero.

EXE An integer representing a custom comop number.

In addition, there are emulated stack objects internally implemented by the ETAC interpreter in terms
of combinations of certain stack objects described above. The emulated stack objects are listed below.

Type Value

Function An internal emulation containing a procedure (ETAC function).

Data object An internal emulation containing a dictionary (data object).

Each stack object is associated with a set of possible actions determined by the stack object’s type.
When the ETAC interpreter activates a stack object, an appropriate one of those actions is performed
by default. For example, when a command stack object is activated, its name is searched for in a
dictionary on the dictionary stack, and the stack object associated with that name in the dictionary is
activated. When an integer stack object is activated, it gets pushed onto the object stack. Also, some
stack objects perform a different action on their second activation. An ETAC programmer can alter the
action of some stack objects (limited to the set of possible actions).

7. The TAC stacks
In general, a ‘stack’ is a last-in-first-out (LIFO) list of items. The ‘top’ of the stack is the most recent
item put onto the stack. There are three stacks (TAC stacks) used in ETAC: (1) the object stack (the
main one), (2) the dictionary stack (for dictionaries), and (3) the operator stack (for operator TAC
objects). The TAC stacks have no defined size (their size is said to be “infinite”).

The stack objects on all three TAC stacks can be manipulated in various ways: The order of the stack
objects can be changed, stack objects can be copied and duplicated, stack objects can be created and
deleted, the number of stack objects on a TAC stack can be obtained.

The ETAC programmer is responsible for maintaining the TAC stacks. Any stack object put onto a
TAC stack will remain there until it is removed via programmer code.

7.1 The Object Stack
The object stack is the main working TAC stack, and can contain any type of stack object. The object
stack is used mainly for passing data for processing among comop stack objects. It can also be used for
temporarily storing stack objects.

7.2 The Dictionary Stack
The dictionary stack can contain only dictionaries. A dictionary item in any dictionary on the
dictionary stack can be searched for by name from the top of the dictionary stack to the bottom. When
a dictionary item is found, its associated stack object can be automatically activated or pushed onto the
object stack.

7.3 The Operator Stack
The operator stack can contain only operator stack objects, and is used to temporarily store the
operator stack object existing in an operator expression until the last operator argument has been put
onto the object stack. Then, the topmost operator stack object on the operator stack is automatically
activated to carry out its intended purpose.

8. Comments
Comment text exists between a pair of matching comment delimiters. The opening (left) delimiter of
the pair is a square bracket followed immediately by a contiguous series of one or more asterisks. The
series is delimited by a non-asterisk. It has the form ‹[*···*c› (where c is a non-asterisk). The
matching closing (right) delimiter is a series of contiguous asterisks (with a non-asterisk start
delimiter) of the same length as the opening delimiter, followed immediately by a closing square
bracket. It has the form ‹c*···*]› (where c is a non-asterisk). The first sequence of characters after the
opening delimiter that form the closing delimiter, outside of any comments that have the same
matching delimiters, will be regarded as the matching delimiter. Between these two comment
delimiters, any characters can exist (except characters forming a matching closing delimiter outside of
any comments that have the same matching delimiters).

A comment can be nested within an outer comment (to any level) having the same or different
delimiters as the delimiters of the outer comment, for example, ‹[*I am a comment [* and I am
nested*] I am the rest of the comment*]› is a nested comment with the inner comment
having the same delimiters (shaded) as the outer comment. The following is an example of comments
nested with different delimiters: [**I am a comment [* I am nested*] I am still a
comment**]. The comment delimiters of the inner comment are regarded as text by the outer
comment, not as comment delimiters. Therefore, the following is also valid: [*I am a comment [**
I am not nested, I am part of the comment*]. The shaded text is not regarded as a
comment delimiter because it is different from the opening and closing delimiters of the outer
comment. However, the following example is not valid: [*I am what ? [* I am not nested, I
am not a comment*]. The last comment delimiter is the closing delimiter of the shaded text; the
outer ‘comment’ has no closing delimiter.

Care must be taken when using comments. For example, ‹[****]› indicates only an opening comment
delimiter with four asterisks, not both an opening and a closing delimiter with two asterisks each. A
way to achieve the desired effect (an empty comment) is: [** **].

9. Variables
In ETAC, a “variable” is a dictionary item, consisting of a dictionary keyword (the variable’s “name”)
and an associated stack object (the variable’s “value”) intended to be different at various times during
an ETAC session. The variable’s value is modified by replacing that stack object. A variable name
and its value is initially allocated to a dictionary and initialised at program run-time, not at program
design-time. The value of a variable is typically assigned (replaced) by a stack object existing on the
object stack. The same variable can have any type of value at any time within ETAC code as desired
by the ETAC programmer. More than one variable of the same name can exist in a dictionary. The
first-found variable of a particular name on the dictionary stack masks other variables of the same
name.

In ETAC, the concept of a variable is merely for the convenience of the programmer and is not a
component of the language (the ETAC programming language can be understood without that concept).
A variable is merely a dictionary item, but a variable’s name is expressed as a command or operator, or
sometimes, a string in ETAC text script.

9.1 Allocating Variables
Variables must be allocated to a dictionary before they can be used. A variable can be allocated only
to the topmost dictionary on the dictionary stack, either directly or indirectly. When a variable is
allocated, it is also initialised with a value. The following examples show how to allocate a variable
directly to the topmost dictionary whether or not that variable already exists in any dictionary on the
dictionary stack.

(1) MyVar :- 10; [* Allocates an integer. *]
(2) MyVar :- "I am all string"; [* Allocates a string. *]
(3) MyVar :- (5 + 3.7); [* Allocates the result of an expression. *]
(4) MyVar :- MyVar2; [* Allocates the value of another variable. *]
(5) 99.9; MyVar :-; [* Yes, you can do this (creates and initialises MyVar with 99.9). *]
(6) 99.9; :-; MyVar; [* !!!But you cannot do this. *]
(7) MyFnt :- fnt:(…){…}; [* Allocates a function. *]
(8) MyProc :- {…}; [* Allocates a procedure. *]

If the variable name exists in a string, then the variable is allocated as in the following examples.

(1) new_dict_item "MyVar" 10;
(2) new_dict_item "MyVar" "I am all string";
(3) new_dict_item ("My" + "Var") (5 + 3.7);
(4) new_dict_item MyStrVar MyVar2; [* Assume that MyStrVar contains a string. *]
(5) 99.9; "MyVar"; new_dict_item;
(6) 99.9; new_dict_item "MyVar";
(7) new_dict_item "MyFnt" fnt:(…){…};
(8) new_dict_item "MyProc" {…};

As can be seen in the illustrations above, the ‹:-› symbol and the new_dict_item command
accomplish the same task — that of allocating a new variable to the topmost dictionary. However, the
left argument of ‹:-› must be an explicit variable name; it cannot be a quoted string.

A variable is indirectly (automatically) allocated if an attempt is made to assign (rather than allocate)
to a non-existing variable.

9.2 Assigning Variables
The value of an existing variable can be replaced by assigning a stack object to that variable. If the
variable does not exist anywhere in a dictionary on the dictionary stack, then the variable is
automatically allocated to the topmost dictionary on the dictionary stack before being assigned. The
following examples illustrate how to assign a variable.

(1) MyVar := 10; [* Assigns an integer. *]
(2) MyVar := "I am all string"; [* Assigns a string. *]
(3) MyVar := (5 + 3.7); [* Assigns the result of an expression. *]
(4) MyVar := MyVar2; [* Assigns the value of another variable. *]
(5) 99.9; MyVar :=; [* Yes, you can do this (assigns 99.9 to MyVar). *]
(6) 99.9; :=; MyVar; [* !!!But you cannot do this. *]
(7) MyFnt := fnt:(…){…}; [* Assigns a function (not usually done). *]
(8) MyProc := {…}; [* Assigns a procedure (not usually done). *]

If the variable name exists in a string, then the variable is assigned as in the following examples.

(1) asn_dict_item "MyVar" 10;
(2) asn_dict_item "MyVar" "I am all string";

(3) asn_dict_item ("My" + "Var") (5 + 3.7);
(4) asn_dict_item MyStrVar MyVar2; [* Assume that MyStrVar contains a string. *]
(5) 99.9; "MyVar"; asn_dict_item;
(6) 99.9; asn_dict_item "MyVar";
(7) asn_dict_item "MyFnt" fnt:(…){…};
(8) asn_dict_item "MyProc" {…};

As can be seen in the illustrations above, the ‹:=› symbol and the asn_dict_item command
accomplish the same task — that of assigning a value to an existing variable (or allocating a new
variable to the topmost dictionary if the variable is nonexistent). However, the left argument of ‹:=›
must be an explicit variable name; it cannot be a quoted string.

9.3 Retrieving the Value of a Variable
A command effectively contains the name of a variable. If a variable contains an integer, decimal,
string, sequence, memory object, mark object, ETAC function, data object, or null, then the presence of
the variable name (ie: the command) in ETAC text script pushes the value of the variable onto the
object stack. If the value is a dictionary, then that value is pushed onto the dictionary stack. For other
values, an appropriate action is performed. The following example illustrates the idea.

Var1 := "Tin "; Var2 := 10; [* Assignments. *]
Var := (Var1 + Var2); [* Combines the retrieved values of Var1 and Var2. *]

In the last line, the value of Var2 is pushed onto the object stack, followed by the value of Var1. The
two values are combined via the ‘+’ operator leaving a string ("Tin 10") on the object stack, which is
then assigned to Var.

9.4 Global and Local Variables
In ETAC, all variables are global because they are merely dictionary items existing in a dictionary on
the dictionary stack. However, a dictionary can be made to exist temporarily only during the time that
an ETAC function or procedure is executing. Such a dictionary is regarded as a local dictionary, and
the variables allocated in a local dictionary will be destroyed along with the destruction of that local
dictionary. The effect is that the variables in a local dictionary simulate (temporary) local variables.

10. Object Types
Stack objects are created by the presence of appropriate tokens in ETAC text script. When the ETAC
interpreter encounters a token, it internally creates a stack object corresponding to that token, then
performs a predetermined action with respect to that stack object depending on its type.

The following sections describe some of the common data types in the ETAC programming language.

10.1 Numbers and Booleans
There are two forms of numbers: (1) integers and (2) decimal numbers. There is no distinct boolean
type, but integer values can be used as logical or binary boolean values. true and false are intrinsic
boolean constants.

(1) 2145 [* Integer. *]
(2) -57 [* Integer. *]
(3) 23.0 [* Decimal. *]
(4) 58e-3 [* Decimal. *]
(5) 0x35A2C49F [* Binary boolean. *]
(6) false [* Logical boolean (same as 0). *]
(7) true [* Logical boolean (same as –1). *]

Each token presented above represents an integer stack object.

10.2 Characters and Strings
A string consists of any Unicode® scalar value characters (excluding U+0000). There is no distinction
between a string of characters and a single character in ETAC. A single character is a string of one
character. Strings can be modified. The same string cannot be shared among different variables. A
string token is delimited by double-quote characters (“regular” string) or single-quote characters
(“raw” string). The first character of a string is at offset zero.

In ETAC, strings are implemented in the UTF-16LE encoding scheme.

(1) "" [* Empty string. *]
(2) "Hello regular string" [* Regular string. *]
(3) "Hello green apple\#1F34F#" [* Regular string with Unicode escape sequence. *]
(4) 'Hello raw string' [* Raw string (all characters interpreted literally, except ‹'¯›). *]
(5) 'Hello '¯raw'¯ string' [* Raw string containing two single quotes; ‹'¯› → ‹'›. *]
(6) "c" [* A character (same as a string). *]

Each token presented above represents a string stack object.

A string can be modified in various ways, and its length (number of characters) can be obtained. There
are two kinds of lengths that apply to a string — the w-char character length and the u-char character
length. It is also possible to obtain the byte length of a string. These are illustrated in the following
examples.

(1) | "Hello-string" | [* String u-char length (12). Whitespaces are necessary here. *]
(2) StrLen := |(Str + "my string")|; [* String u-char length. *]
(3) void StrLen := str_len "string\#1F44D#"; [* String w-char length (8). *]
(4) StrLen := | "string\#1F44D#" |; [* String u-char length (7). *]
(5) void StrLen := size "string\#1F44D#"; [* String byte length (16). *]
(6) Str#7 [* Accessing a string u-char character (at u-char offset 7). *]
(7) Off := 3; Char := Str#Off; [* Accessing a string character (at u-char offset 3). *]
(8) Str#(1 + 3) := 'string';

[* Replacing a string u-char character (at u-char offset 4) with a string. *]
(9) Str#* := "Me last"; [* Replacing the last string u-char character with a string. *]
(10) Str := put_str 9 3 ReplStr Str;

[* Replacing 3 w-char characters of a string (at w-char offset 9). *]
(11) Str := ins_str 9 "C" Str; [* Inserting one character (at w-char offset 9). *]
(12) Str#2 := ""; [* Deleting one character (at u-char offset 2). *]
(13) Str += 'string'; [* Appending to a string. *]

Examples (1) to (5) illustrate how to obtain the length of a string. Example (6) illustrates the typical
way to index a string. Example (7) illustrates that the index position can be an expression that returns
an offset. Examples (8) to (10) illustrate how string characters in a string (Str) are replaced. Example
(11) illustrates how a string is inserted into another string (Str). Example (12) illustrates how a string
character can be deleted. Example (13) illustrates how a string can be appended to another.

10.3 Memory Objects
Memory stack objects represent arbitrary binary data, typically the contents of a file. A memory stack
object can be created pre-initialised with data. The data can be accessed and modified directly, and
text data can be extracted into a string. The size (the number of bytes of usable data) of a given
memory stack object is variable.

The following examples illustrate how to create a memory stack object and modify and extract the
usable data within it.

(1) &0h3F049A25Bd804CfD58 [* Initialised with nine bytes. *]
(2) &0 [* Memory block size is 50kB, usable data size is zero bytes. *]
(3) &20 [* Memory block size is 20 bytes, usable data size is zero bytes. *]
(4) Var := &0h7A203B4899; void Val := peekb 4 Var; [* Data accessed. *]
(5) Var := &0h7A203B4899; void pokes 2 30 Var; [* Data modified. *]
(6) Var := to_txt &0h737472696E67; Str := mem_to_str Var; [* Memory to string. *]

Example (1) illustrates a memory stack object being created and initialised with the specified bytes of
usable data, then pushed onto the object stack. Examples (2) and (3) illustrate a default memory stack
object being created with 50,000 bytes and with 20 bytes, respectively, but with zero usable data size.
Examples (4), (5), and (6) illustrate a memory stack object being created and initialised with the
specified bytes, then assigned to the variable Var. For example (4), the byte at offset 4 is extracted
from the memory stack object (in Var) and assigned to Val. The value of Val will be 99H. For
example (5), the two bytes (short integer) at offset 2 in the memory stack object are replaced with the
number 30 (1E00H). For example (6), the contents of the memory stack object is converted to a string
then assigned to Str (the contents is: string).

Two or more memory stack objects can be concatenated. A string can be concatenated to, or inserted
at the front of, a memory stack object. The following examples illustrate the idea.

(1) Mem := (&0h7A203B4899 + &0h737472696E67); [* Memory concatenation. *]
(2) void add2 Mem1 &0h737472696E67; [* Memory concatenated to Mem1. *]
(3) Mem += "string here"; [* String concatenated to a memory stack object Mem. *]
(4) Mem := add2 "string here" &0h737472696E67; [* String insertion at front. *]
(5) (+ Mem1 "string here" Mem2) [* String and memory concatenation to Mem1. *]
(6) Mem := (+ &0 Mem1 Mem2 Mem3 Mem4); [* Multiple memory concatenation. *]

Examples (1), (2), and (6) illustrate how the usable data in memory stack objects can be concatenated
into the first memory stack object. Examples (3) and (4) illustrate, respectively, how a string can be
concatenated to the end, and inserted at the front, of a memory stack object. Example (5) illustrates
how a string then a memory stack object can be concatenated to the end of the first memory stack
object (Mem1).

A memory stack object can be expanded with zero-initialised (“null”) bytes of usable data, or the
usable data contracted. In general, adding an integer to a memory stack object expands the usable data
by the specified number of null bytes; subtracting an integer from a memory stack object truncates the
usable data by the specified number of bytes. The integer is interpreted as a positive number. The
position of the integer relative to the memory stack object determines whether the said operation is
performed at the front or the end of the usable data.

The following examples illustrate how the size of usable data in a memory stack object can be
modified.

(1) Mem := (&0h7A203B4899 + 20); [* Memory expanded at end. *]
(2) void add2 Mem1 20; [* Memory Mem1 expanded at end. *]
(3) Mem := (Mem – 54); [* Memory truncated at end. *]
(4) Mem := add2 33 &0h737472696E67; [* Memory expanded at front. *]
(5) (10 - Mem) [* Memory truncated at front. *]
(6) Mem := sub2 29 Mem; [* Memory truncated at front. *]

Examples (1) and (2) illustrate a memory stack object expanded with 20 null bytes of usable data at the
end of the existing usable data. Example (3) illustrates the usable data of a memory stack object being
truncated at the end by 54 bytes. Example (4) illustrates a memory stack object expanded with 33 null
bytes at the front of the usable data. Examples (5) and (6) illustrate a memory stack object being
truncated by the specified number bytes at the front of the usable data.

The size of the usable data in a memory stack object can be obtained.

(1) void MSize := size Mem; [* Size of a memory stack object. *]

Example (1) obtains the size (MSize) of the usable data in a memory stack object (Mem).

The usable data in a memory stack object can be converted from one data form to another. The
following examples illustrate how.

(1) Mem := to_utf8 Mem1; [* Memory Mem1 converted to new UTF-8 Mem. *]
(2) Mem := to_utf16 :!MO_BE: Mem1; [* Memory Mem1 converted to new UTF-16BE Mem. *]
(3) void cvt_data_to :#MO_U16_BE: Mem;

[* Memory Mem converted to UTF-16BE in-place. *]
(4) void cvt_data_to data_form Mem1 Mem2;

[* Mem2 converted (in-place) to the same data form as contained in Mem1. *]
(5) Mem := to_utf32 "hello string"; [* String converted to new UTF-32 Mem. *]
(6) DForm := data_form Mem; [* Returns the data form indicator of Memory Mem. *]

Example (1) illustrates how text in a memory stack object (Mem1) is converted to UTF-8 text in a new
memory stack object (Mem). Similar additional conversion commands are: to_bin, to_txt,
to_utf16, to_utf32, as well as cvt_data_to.

Example (2) illustrates how text in a memory stack object (Mem1) is converted to UTF-16 big endian
text in a new memory stack object (Mem).

Example (3) is the same as example (2) except that the conversion is done in-place (ie: the data in Mem
is modified).

Example (4) illustrates how the data in a memory stack object (Mem2) can be converted to the same
data form as already existing in another memory stack object (Mem1).

Example (5) illustrates that a string can be converted to UTF-32 (little endian) in a new memory stack
object (Mem).

Example (6) illustrates how find out the data form of a memory stack object (Mem). A data form
indicator is an internal member of a memory stack object that indicates the data form of that stack
object.

10.4 Sequences
The ETAC programming language defines sequences of stack objects of any type (including sequences)
rather than arrays. Sequences are not primary objects and must be built via sequence expressions
before they can be used. The index number of the first element of a sequence is one. The number of
elements in a given sequence is variable and can be changed by ETAC code at any time.

A sequence can be built at the build-time of its parent procedure, or at the call-time of its parent
procedure. A sequence expression builds the sequence elements on the object stack before those
element are converted into an actual sequence.

The following examples illustrate how a sequence can be built.

(1) [3, "Hello string", 4.5, {…}] [* Regular sequence. *]
(2) [(3 + 4), [21, true], MyVal] [* Sequence containing a subsequence. *]
(3) [1, 2, 3, 4, 5, 6] [* Regular sequence containing numbers representing indices. *]
(4) [3 2 1, 5 4, 6] [* Funny way to create the sequence at (3). *]
(5) end_seq 6 5 4 3 2 1 start_seq; [* Another way to create the sequence at (3). *]
(6) start_seq; 1; 2; 3; 4; 5; 6; end_seq; [* ditto *]
(7) [] [* Empty sequence. *]

Each group of tokens presented above represents a sequence. In example (2), the sequence is built
each time its parent procedure or ETAC function is called because the variable MyVal needs to be
evaluated for each call. Likewise, for examples (5) and (6), the sequence is created using commands,
and so it is created each time the parent procedure or ETAC function is called. The examples (3), (4),
(5), and (6) create the same sequence where each element corresponds to its index. Example (4)
utilises sequential reverse-flow activation using a comma as the marker token. (Actually, all sequence
expressions using square brackets utilise sequential reverse-flow activation .)

A sequence can be modified in various ways, and its size (number of elements) can be obtained. This
is illustrated in the following examples.

(1) |[3, "Hello string", 4.5, {…}]| [* Sequence size (4). *]
(2) SeqSize := |(Seq + [5, 8, 20])|; [* Sequence size. *]
(3) void SeqSize := size [1, 2, 3]; [* Sequence size (3). *]
(4) Seq%[3, 7] [* Accessing a subsequence element (at index 3,7). *]
(5) Idx := [3]; Elm := Seq%Idx; [* Accessing a sequence element (at index 3). *]
(6) Seq%[4] := 21.876; [* Replacing a sequence element (at index 4). *]
(7) Seq%[] := "Me last"; [* Replacing the last sequence element. *]
(8) Seq<%[9] := [5, 8, 20]; [* Inserting one sequence (at index 9). *]
(9) Seq<%%[9] := [5, 8, 20]; [* Inserting the (3) elements of a sequence (at index 9). *]
(10) Seq +:= [5, 8.3, 20]; [* Appending one sequence. *]
(11) Seq ++:= [5, [8, "string"], 20]; [* Appending the (3) elements of a sequence. *]

Examples (1) , (2), and (3) illustrate how to obtain the size of a sequence. Example (4) illustrates the
typical way to index a sequence (in this case a subsequence is accessed). Example (5) illustrates that
the index position can be an expression that returns an index sequence. Examples (6) and (7) illustrate
how a sequence element is replaced. Examples (8) and (9) illustrate how elements are inserted into a
sequence. Examples (10) and (11) illustrate how elements are appended to a sequence.

10.5 Dictionaries
Dictionaries, as such, typically exist on the dictionary stack, and are created at the top of the
dictionary stack with a capacity to contain a specified number of dictionary items. The number of
dictionary items in a dictionary is not limited to the initial capacity. Any number of additional
dictionary items can be added to the dictionary at any time. Data dictionaries are automatically
pushed onto and popped off the dictionary stack whenever the members of a data object are accessed.

(1) new_dict "My Dictionary" 0; [* Allocation of initial default size dictionary. *]
(2) new_dict "" 30; [* Allocation of initial specified size (30 items) dictionary. *]

The two examples above illustrate how to create an empty dictionary with the specified name and
initial size.

Dictionaries on the dictionary stack are globally accessible, but can be created to exist temporally as
local dictionaries (typically for use with procedures and ETAC functions). While a local dictionary
exists temporarily, it can be accessed globally. An ETAC function automatically creates a local
dictionary before the function’s body is executed, and automatically deletes that local dictionary after
the function body’s execution has ended.

The following examples illustrate how a local dictionary can be created and destroyed explicitly and
implicitly.

(1) MyProc :- [* Allocation of local dictionary in a procedure (if required). *]
{
start_local; [* Creates local dictionary. *]
 …
end_local; [* Destroys local dictionary. *]
};

(2) MyFnt :- fnt:(…) [* ETAC function automatically creates temporary local dictionary. *]
{
start_local; [* Automatically creates local dictionary here. *]
 …
end_local; [* Automatically destroys local dictionary here. *]
};

Example (1) illustrates how to explicitly create and destroy a local dictionary in a procedure. Example
(2) illustrates that a local dictionary is temporarily created automatically for an ETAC function
(start_local and end_local are not inserted by the programmer in an ETAC function).

The topmost dictionary on the dictionary stack can be assigned to a variable as illustrated below. The
defr command causes the dictionary to be pushed onto the object stack when the variable is later
presented, rather than being pushed onto the dictionary stack by default.

MyDict := defr pull_dict;

Two or more dictionaries can be combined. Note that combining dictionaries is rarely done.

(1) pull_dict ++:= Dict1; [* Conjoining dictionary items to the topmost dictionary. *]
(2) (++ Dict1 Dict2 Dict3); [* Conjoining dictionary items of many dictionaries. *]

Example (1) illustrates how the topmost dictionary on the dictionary stack can have dictionary items
added at the top from another dictionary (Dict1). Example (2) illustrates how the dictionary items of
a number of dictionaries can be combined to the first dictionary (Dict1).

10.6 Data Objects
A data object is logically a set of named stack objects, and is emulated by the ETAC interpreter as a
data dictionary. The dictionary items of the data dictionary constitute the members of the data object.
A data object has no intrinsic identification (it is “anonymous”) but is typically allocated or assigned
to an ETAC variable which is used as the data object’s identification. However, a data object can be
given a name stored in a member variable of that data object. Such named data objects can be used
stand-alone, as variant records, or as object-oriented classes and their instances. Data objects are
created by the data: ETAC statement as illustrated in the examples below.

(1) MyData :- data: [* Data object creation. *]
{
 mdMember1 :- 10;
 mdMember2 :- [3, "string", 21.9];
 mdProc :- {…};
 mdFnt :- fnt:(…) {…};
};

(2) [* Named data object used for object-oriented programming. *]
@DefData("MyDataObj") ["BaseObj1", "BaseObj2", "BaseObj3"]
{
 @Name :- "MyDataObj"; [* Automatically allocated. *]
 [* Member allocations and assignments. *]
};

(3) DataObj := @Data("MyDataObj"); [* Named data object access. *]
(4) MyData1 :- @NewData("MyDataObj"); [* An instance of a named data object. *]

Example (1) illustrates how a regular data object can be created. The members are allocated to the
data object’s data dictionary. Example (2) illustrates creating a named data object derived from three
base data objects (which are also named data objects in this case). Example (3) illustrates how to
access a named data object. Example (4) illustrates how to create a new instance of a named data
object.

Specified members of a data object can be made private (or “exclusive”) to specified function members
of that data object as illustrated in the following example.

(1) MyData :- data:
{
 mdFnt1 :- fnt:(…) {…}; [* mdFnt1 can access exclusive members. *]
 mdFnt2 :- fnt:(…) {…}; [* mdFnt2 can access exclusive members. *]
 mdFnt :- fnt:(…) {…}; [* mdFnt cannot access exclusive members. *]

exclusive: ["mdFnt1", "mdFnt2"]
{
 [* Exclusive members allocated here.
 These members can only be accessed by mdFnt1 and mdFnt2. *]
};
};

Example (1) illustrates how function members can be made to access members exclusively.

Two data objects can be combined as illustrated in the following examples (MyData and MyOwnData
contain a data object).

(1) MyData ++:= data:{…}; [* Conjoining data object members. *]
(2) MyData ++:= MyOwnData; [* Conjoining data object members. *]

A member of a data object can be selected and its value modified as illustrated in the following
examples (MyData contains a data object).

(1) MyData.mdMember [* Accessing a data object member. *]
(2) MyData.mdMember := 10; [* Modifying a data object member. *]
(3) MyData.

{
 mdMemb1 :- 25.9; [* Allocates a new member. *]
 mdMemb2 := ("this " + "string"); [* Modifies an existing member. *]
 write_con mdMemb2; [* Does something with a member. *]
};

Example (1) access a member of a data object. Examples (2) and (3) modify data object members. For
example (3), the topmost dictionary on the dictionary stack is the data dictionary of the data object
being accessed, but only while the code within the braces is active.

10.7 Procedures
Procedures (including the body of ETAC functions) are not primary objects and must be built via
procedure expressions before they can be used. A procedure has no intrinsic identification (it is
“anonymous”) but is typically allocated or assigned to an ETAC variable which is used as the
procedure’s identification. A procedure can be modified in various ways, but such modifications are
rarely done. A procedure is effectively a sequence that, by default, gets executed when activated.
Operations that can be done to a sequence can also be done to a procedure after the procedure is
pushed onto the object stack.

A procedure can be built at the build-time of its parent procedure, or at the call-time of its parent
procedure. A procedure expression builds the procedure elements onto the object stack before those
element are converted into an actual procedure.

The following examples illustrate how a procedure can be built.

(1) Proc :- {A := 3; B := 4; C := (A + B);}; [* Procedure creation at build-time. *]
(2) start_proc; [* Procedure creation at call-time. *]

 A `:= 3; B `:= 4; C `:= `(`A `+ `B `);
end_proc; Proc :-;

(3) {; [* Procedure creation at call-time. *]
 A `:= 3; B `:= 4; C `:= `(`A `+ `B `);
}; Proc :-;

(4) A := …; B := …;
{; [* Unique procedure creation at call-time. *]
 C `:= `(A `+ B `); [* A and B get evaluated before procedure creation. *]
}; Proc :-;

Example (1) illustrates a typically created procedure. The braces are actual commands that begin ({)
and end (}) the construction of the procedure on the object stack. Once built, the procedure is
typically allocated to a variable by the programmer. This procedure is built when its parent procedure
or ETAC function is built. Examples (2), (3), and (4) illustrate how a procedure can be built anew each
time its parent procedure or ETAC function is called. Note the use of the acute accent character (`).
This is required so that the comops within the procedure body get pushed onto the object stack as
elements rather than get executed. When the procedure gets executed later via Proc, then those
comops will be executed as required. Example (3) is an alternative way of creating the procedure of
example (2). In example (4), the variables A and B get evaluated each time before the procedure gets
created anew (note the absence of the acute accent character before those two variables).

10.8 Functions
ETAC functions are emulated, not primary objects, and must be defined via function definitions before
they can be used. All ETAC functions are “anonymous”, that is to say that they have no intrinsic
identification. ETAC functions can be copied, replicated, or duplicated, and allocated or assigned to
any number of other variables. Mostly, however, an ETAC function is only allocated to one variable by
which it is called.

When called, an ETAC function will first create a local dictionary, and allocate the parameters (if any)
to that local dictionary. The parameters are initialised with the stack objects existing on the object
stack in the same order that the parameters are specified; the first parameter specified on the left will
be initialised with the topmost stack object, the second parameter will be initialised with the second-
top stack object, and so on. The function body is then activated. Finally, the local dictionary is
destroyed.

The example below illustrates an ETAC function being defined with three parameters, and allocated to
a variable.

MyFnt :- fnt:(pPar1 pPar2 pPar3)
{
 … [* Programmer defined function body here. *]
};

The ETAC function above is logically equivalent to the following (the pale blue text is created
internally by the ETAC interpreter).

MyFnt :- fnt:(pPar1 pPar2 pPar3)
{
start_local; [* Automatically creates local dictionary here. *]
pPar1 :-; pPar2 :-; pPar3 :-; [* Automatically allocates parameters here. *]

 … [* Programmer defined function body here. *]

end_local; [* Automatically destroys local dictionary here. *]
};

A function command must be called using a pair of parentheses. There must be no whitespace between
the left parenthesis and the function command. An ETAC function can return as many stack objects on
any TAC stack (but typically the object stack) as desired. The first four examples below illustrate a
number of ways that the ETAC function defined above can be called.

(1) MyFnt(21.7 "text" 99); [* Typical call. *]
(2) MyFnt(21.7 "text") 99;
(3) MyFnt() 21.7 "text" 99;
(4) 99; MyFnt(21.7) "text"; [* Exotic call. *]
(5) F(do I to 3 {I;}); [* Equivalent to: F(3 2 1). *]
(6) A := B := C := F() [* F() returns three stack objects, which are assigned right to left. *]

Note that the arguments of a function call need not all be within the parentheses, but they do need to
exist in the appropriate order on the object stack.

10.9 Other Object Types
A mark stack object is a unique type of stack object that does not contain useful data. There are eight
mark stack objects (numbered 0 to 7) for use by the ETAC programmer for their own purposes. The
ETAC interpreter uses the mark 0 stack object.

A null stack object is a unique type of stack object that does not contain any useful data. There is only
one type of null stack object. A null stack object is typically used to initialise a newly allocated ETAC
variable to indicate that it does not have a legitimate value.

The following examples illustrate the use of the null and mark stack objects.

(1) MyVar :- ?; [* Allocates a null stack object (?) to a variable. *]
(2) MyVar := !1; [* Assigns a mark 1 stack object (!1) to a variable. *]
(3) Myvar :- !7; [* Allocates a mark 7 stack object (!7) to a variable. *]

An EXE stack object is used to access code defined in another programming language (typically the
C++ programming language).

11. Operator Expressions
In the ETAC programming language, operator expressions explicitly require parentheses. There are no
implied parentheses around the operators and their arguments; specifically, multiplication and division
do not have automatic precedence over addition and subtraction. The parentheses, operator, and
operands together form an operator expression, which can be nested. The operator can be in any
position within the parentheses (operator expressions therefore use “non-fix” notation). One or more
whitespaces is required between an operator and its operands and among the operands themselves.
The examples below illustrate some operator expressions.

(1) (3 + 2) [* Simple expression returns 5. *]
(2) (3 &add 2) [* Same as above. *]
(3) (* 5 8 2.6 9) [* Multiple arguments; operator at any position. Returns 936.0 . *]

(4) end_op 5 8 2.6 &mult 9 start_op; [* Same as above but unusual. *]
(5) start_op; 9; *; 2.6; 8; 5; end_op; [* Same as above but very unusual. *]
(6) (> Num1 Num2 Num3) [* Same as ((Num1 > Num2) &and (Num2 > Num3)). *]
(7) ((4 * 5) + 8) [* Nested expression (parentheses required). *]
(8) (+ do_for {} 1 1 10) [* Sums integers from 1 to 10. Returns 55. *]

Note that operator expressions within parentheses are processed from right to left, and exactly one
operator must exist within a pair of matching parentheses at the top level. Note also that the
parentheses are actually commands not just punctuation.

The operators are: +, &add, -, &sub, *, &mult, /, &div, ++, &combine, ^, &power, =, &equal, !=,
&n_equal, &and, &or, >, &great, >=, &great_eq, <, &less, <=, &less_eq. Some pairs of the
operators are equivalent.

Operators can also be defined by the ETAC programmer via procedures. The easiest way to define an
operator is to define a procedure that takes two arguments and returns a result on the object stack, then
using the mk_op command to create the operator. The operator can then be used in an operator
expression with two or more compatible arguments. The example below illustrates.

MyOpr :- mk_op {…}; [* The procedure takes two arguments returning a result. *]
Res := (&MyOpr Arg1 Arg2 Arg3 Arg4 Arg5); [* MyOpr used with many arguments. *]

12. Flow Control
The ETAC programming language supports a number of iteration commands and a single universal
iteration ETAC statement. There are also commands and ETAC statements that exit iteration and other
procedures. There are two types of conditional commands, and two types of corresponding conditional
ETAC statements. There are no “go to” statements in ETAC.

12.1 Conditionals
Conditional code controls the flow of activation based on a condition but without iteration.

12.1.1 If-then ETAC Statement
There is only one multi-conditional ETAC statement as illustrated in the following examples.

(1) if (X > 3) then {[* true code *]} endif
(2) if Success then {[* true code *]} [else {[* false code *]}] endif
(3) if C1 then {…} [C2 then {…} ··· Cn then {…}] [else {…}] endif

Example (3) presents the full form of the conditional ETAC statement. C1 to Cn (each of which can be
a variable, operator expression, procedure expression, and more) must leave a boolean value on the
object stack.

12.1.2 If-then ETAC Function
The conditional ETAC function is typically used when a stack object is required to be pushed onto the
object stack based on a condition as illustrated in the following example.

(1) @IfElse(C1 {[* true code *]} {[* false code *]}) [* Typically returns a stack object. *]

12.1.3 If-then Commands
There are three conditional commands as illustrated in the following examples.

(1) if_do {[* true code *]} (X > 3)
(2) Success; if_do {[* true code *]};
(3) if_else {[* false code *]} {[* true code *]} Success

(4) if_then [C1, {…}[, C2, {…}, ··· Cn, {…}][, {…}]]
(5) X := [C1, {…}, C2, {…}]; X ++:= [C3, {…}, {…}]; if_then X;

Example (4) presents the full form of the if_then multi-conditional command. C1 to Cn (each of
which can be a variable, operator expression, procedure expression, and more) must each leave a
boolean value on the object stack. The command requires a sequence as its only argument. The
sequence contains condition and code pairs; the optional last element is the “else” code. Since the
argument is a sequence, that sequence can be altered at run-time, as shown in example (5), allowing the
structure of the if_then command to be dynamic.

12.1.4 Choice ETAC Statement
There is only one choice ETAC statement. The choice statement compares (indicated by the operator
after the first argument) the value of a stack object (via the argument after “when”) with a number of
possible values (via the arguments before “then”) and activates the procedure associated with the
possible value (the procedure after “then”) when the first one of the comparisons evaluates to true.
If no comparison evaluates to true then an alternative procedure (after “else”) is optionally
activated.

The following examples illustrate the choice ETAC statement.

(1) when X = 3 then {…} [Val then {…} … (A + B) then {…}] endwhen
(2) when (X - Y) >= {…} then {…} [… 5 then {…}][else {…}] endwhen
(3) when V op X1 then {…} [X2 then {…} ··· Xn then {…}] [else {…}] endwhen

Example (3) presents the full form of the choice ETAC statement. op is one of the following: ‹=› and
‹is› (these two are the same), ‹!=›, ‹<›, ‹>›, ‹<=›, ‹>=›.

12.1.5 Choice Commands
There are three choice commands. These operate in a similar fashion as the choice ETAC statement but
without the “then”, “else”, and “endwhen” keywords.

The following examples illustrate the choice commands.

(1) switch X `= [3, {…}[, Val, {…}, …, (A + B), {…}][, {…}]]
(2) switch (X - Y) `ge [{…}, {…}[, … 5, {…}][, {…}]]
(3) switch … `&MyOp […]
(4) switch V (`op|cmd) [X1, {…}[, X2, {…}, ··· Xn, {…}][, {…}]]
(5) S := [X1, {…}[, X2, {…}]]; S ++:= [X3, {…}]; C := {…}; switch V C X;
(6) switch_eq [3, {…}[, Val, {…}, …, (A + B), {…}][, {…}]] X
(7) select [:#TAC_INT:, {…}, :#TAC_MEM:, {…}, … [, {…}]] Var

Example (4) presents the full form of the switch command. X1 to Xn must each leave a stack object
on the object stack for comparison with the evaluation of V. op is a comparison operator that leaves a
boolean value on the object stack, and cmd is a command that takes two arguments and leaves a
boolean value on the object stack. The command requires a sequence as its third argument. The
sequence contains value and code pairs; the optional last element is the “else” code. Since the third
argument is a sequence, that sequence can be altered at run-time, as shown in example (5), allowing the
structure of the switch command to be dynamic. Example (6) illustrates the switch_eq command,
which is a switch command with an inbuilt “equals” (=) operator (this example operates the same
manner as does example (1)). Example (7) illustrates the select command, which requires a
sequence as the first argument. The sequence consists of a series of pairs of elements. The first
element of a pair evaluates to a stack object type (or sequence of such) and the second element of a
pair is typically a procedure requiring the value of Var as its argument. The type of stack object
pushed onto the object stack by Var is compared with the stack object types indicated in the sequence.
If that type is equal to the first found type in the sequence, then the procedure in the pair is activated

with the argument indicated by Var. If no type is found in the sequence, then the optional last element
in the sequence is activated with the said argument. Note that the structure of all three choice
commands can be altered at run-time.

12.2 Iterations
Iteration code repeats the flow of activation during or until an explicit or implicit condition is satisfied.

12.2.1 ETAC Iteration Statement
There is only one universal iteration ETAC statement. The iteration statement activates a procedure a
specified number of times based on a counter or one or more specified conditions. Iterations terminate
when the first one of the conditions satisfy its termination criterion, or they can be terminated
explicitly.

The following examples illustrate the iteration ETAC statement.

(1) do {…} [* Exactly one iteration. *]
(2) do repeat [Count] {…} [* Unlimited or fixed number of iterations. *]
(3) do Idx [from Start] [to End] [step Step] {…} [* Indexed iterations. *]
(4) do with Elm of Seq {…} [* Iterations with a sequence element. *]
(5) do while Cond {…} [* Iterations while a condition is satisfied. *]
(6) do Idx to |Seq| while (Seq%[Idx] > 10) {…}
(7) do Idx with Elm of Seq while not (Elm <= 10) {…}
(8) do [Idx [from Start] [to End] [step Step]] [with Elm of Seq] [while Cond] {…}

Examples (1), (2), and (8) present the full form of the iteration ETAC statement (note that example (8)
incorporates seven possible modes of iteration). Idx and Elm must be variables. Start, End, and
Step can each be an explicit integer, variable, operator expression, procedure expression, and more.
Seq typically evaluates to a sequence. Cond evaluates to a boolean value each time it is activated.

12.2.2 Command Iterations
There are six iteration commands. These operate in a similar fashion to the iteration ETAC statement,
but the different iteration modes cannot be combined. There are also other commands that perform
iterations implicitly.

The following examples illustrate the iteration commands.

(1) do_repeat {…} [* Unlimited number of iterations. *]
(2) do_loops {…} Count [* Fixed number of iterations. *]
(3) do_for {…} Step Start End [* Indexed iterations. *]
(4) do_with {…} Seq [* Iterations with a sequence element. *]
(5) do_while {…} Cond [* Iterations while a condition is satisfied. *]
(6) do_until {…} Cond [* Iterations until a condition is satisfied. *]

Count must leave a non-negative integer stack object on the object stack. Step, Start, and End must
leave an integer stack object on the object stack. Seq must leave a sequence or procedure on the
object stack. Cond must leave a procedure or command stack object on the object stack that evaluates
to a boolean value each time it is activated. In example (5), Cond is activated prior to each iteration.
In example (6), the procedure is activated at least once; Cond is activated after each iteration.

12.3 Exiting Code Blocks
A ‘code block’ is a procedure whether or not it is part of a command or an ETAC statement. The flow
of activation can ‘break’ (exit without completing) out of a code block either absolutely or
conditionally.

The break ETAC statements are:

exit_do Unconditionally breaks out of the logically immediate iteration ETAC statement.

donext Unconditionally causes control to go to the end of the logically immediate iteration
ETAC statement and continues with the next iteration (if there is one).

exitdo_if Conditionally breaks out of the logically immediate iteration ETAC statement.

donext_if Conditionally causes control to go to the end of the logically immediate iteration ETAC
statement and continues with the next iteration (if there is one).

The break ETAC function commands are:

@Error Calls the handler of the most recent call to @TrapError.

@Exit Breaks out of the logically immediate @BreakOnExit command unconditionally.

@Return Breaks out of the logically immediate ETAC function procedure unconditionally.

@ExitIf Breaks out of the logically immediate @BreakOnExit command conditionally.

@ReturnIf Breaks out of the logically immediate ETAC function procedure conditionally.

The break commands are:

break Breaks out of the logically immediate do_for, do_loops, do_repeat, do_until,
do_while, do_with, or switch commands. Also breaks out of the logically
immediate iteration or choice ETAC statement.

end Immediately ends the current ETAC session.

go_end Ends the logically immediate procedure depending on a specified condition.

exit_err Exits the current ETAC session with a TAC error code unless the TAC error code is
trapped by another command before the ETAC session ends.

13. Object-oriented Programming
Whilst the ETAC programming language is not intrinsically an object-oriented language, nevertheless,
object-oriented programming can be emulated entirely in ETAC code by ‘named’ data objects.

Object-oriented programming, as emulated in the ETAC programming language, requires:

1. an ‘archetype’ data object,

2. the ability to derive additional archetype data objects from existing ones (data object ‘derived’
from ‘base’ data object),

3. data that is specific to each data object derived from the same base data object (‘particular’
members),

4. data that is common (shared) among all data objects derived from the same base data object
(‘common’ members),

5. the ability for specified ETAC functions to have exclusive access to specified data,

6. the ability of members of a derived data object to mask the members of its base data object,

7. the ability of function members of a base data object to access data in its derived data object,

8. the ability of function members of a derived data object to access data in its base data object,

9. any number of instances (as data objects) to be created from any archetype data object
(‘instance’ data object).

Named data objects emulate object-oriented capabilities via the @Data, @DefData, and @NewData
ETAC functions. “Class inheritance” is achieved via @DefData, which can use named data objects or
regular data objects as “base classes”. @DefData is intended to create archetypes (which act as “class
definitions”) of named data objects for the main ETAC session (which includes all other ETAC
sessions). A new instance of a named data object based on such an archetype is created via @NewData.

14. Data Input and Output
An ETAC program can receive input from the command line, and can also read from and write to files,
the console, and dialog boxes. Dialog boxes containing controls can be created by the ETAC
programmer via resource files to receive user input data and to show data. Native ETAC does not
create graphics windows nor can it create graphics images of any kind. However a full interactive
graphics system is intended to be included in AppETAC.dll in the future.

15. External Code Execution
ETAC code existing in a separate file or in a memory stack object can be called via the exec_tac
command. External executable programs (‘.exe’) can be executed via the exec_prog and
exec_prog_sync commands. Functions in an external TAC library can be called via the
@ImportLib, or for more control, via the load_lib commands.

16. Derived Syntax
There are two conceptual forms of syntax for the ETAC language. The ‘primary syntax’ is the defined
syntax as presented in the document ETACProgLang(Official).pdf. ‘Derived syntax’ is syntax that is
derived from primary syntax as a logical consequence of it. For example, ‹[1, 2, 3, 4]› is a
sequence expressed in primary syntax form; ‹[do I to 4 {I;}]› is the same sequence expressed in
derived syntax form. The latter syntax is a natural consequence of the definition of a sequence
expression. Similarly, ‹B := A := 1 2;› is a derived syntax form of ‹A := 1; B := 2;›, and
‹B := A := B A;› (swapping the values of two variables) is a derived syntax form of ‹X := A;
A := B; B := X;›. Derived syntax is possible as a direct consequence of ETAC being a dictionary
and stack based token activated programming language — it is not additional syntax that has been
added to ETAC. The ETAC interpreter does not explicitly syntax check code written in derived syntax
form. Only the primary syntax forms are explicitly defined in the ETAC language and syntax checked
by the ETAC interpreter.

As a result of the capability of derived syntax, exotic statement structures can be created. However,
exotic statements are generally confusing to read, and should be avoided if possible (unless you want
to give yourself airs).

The following is an illustration of exotic use of derived syntax (that is best to be avoided).

[* An illustration of exotic use of derived syntax. *]
MyFnt :- fnt:(A B S1 S2 E1 E2 V1 V2)
{
Idx :- ?;

 [
 do Idx
 from
 when A is
 21.4 then {S1;}
 if (B > 55) then {V1;} else {V2;} endif then {S2;}
 else {3}
 endwhen
 to
 if (if (A = 5) then {10} else {20} endif >= 15)
 then
 {E1;}

 (B = 5) then
 {100}

 else
 {E2;}
 endif
 {Idx;}
]; [*RETURN*]
};

The code above would be better understood if written as follows.

[* An illustration of preferred use of derived syntax. *]
MyFnt :- fnt:(A B S1 S2 E1 E2 V1 V2)
{
Idx :- ?; X :- ?; Y :- ?;

 X := [* Some comments here. *]
 when A is
 21.4 then {S1;}
 @IfElse((B > 55) {V1;} {V2;}) then {S2;}
 else {3}
 endwhen;

 Y := [* Some comments here. *]
 if (@IfElse((A = 5) {10} {20}) >= 15)
 then
 {E1;}

 (B = 5)
 then
 {100}

 else
 {E2;}
 endif;

 [do Idx from X to Y {Idx;}]; [*RETURN*]
};

Another two illustrations of exotic derived syntax that should usually be avoided are shown below.

[* Looks like appending to a conditional statement. *]
if (A = 10) then {Seq1;} else {Seq2;} endif +:= "what?";

[* The conditional statement should be separated from the iteration statement. *]
do while if C then {(D >= E);} else {F;} endif {[* Some code. *]};

Bibliography

Bibliography

The Official ETAC Programming Language copyright © Victor Vella (2020).

Glossary

Glossary

A
activate

a) When referring to a script token that creates a stack object, the script token is converted to a
stack object by the TAC processor and then the object’s nominal action is performed.

b) When referring to a script token that does not create a stack object, an appropriate action is
performed depending on the type of script token.

c) When referring to a stack object, the stack object is temporarily copied by the TAC processor
and then the copied object’s current action is performed.

active
The period of time during which a script token or stack object is performing an action after having
been activated.

B
binary interpreter

Part of an ETAC interpreter that processes TAC binary instructions.

boolean value
An integer interpreted as consisting of 32 binary flags, or a ‘true’ (–1) or ‘false’ (0) value. The
true value is represented by having all the 32 binary flags set (achieved by the value –1 based on a
two’s complement representation of integers). The false value is represented by having all the 32
binary flags unset. A boolean value is typically assigned by a hexadecimal number if used as
binary flags, or by the true or false intrinsic commands if used as a logical condition.

C
command

A script token having the syntax of a comop identifier. A command can be in script form (eg:
‹FilePath›, ‹tac.var›, ‹#abc%03?›, ‹sub:›, ‹.xyz-3›) or instruction form (eg:
‹CMD:FilePath›, ‹CMD:tac.var›, ‹CMD:#abc%03?›, ‹CMD:sub:›, ‹CMD:.xyz-3›).

comop
A command or operator (com mand op erator), or a stack object created by such a command or
operator.

comop identifier
A consecutive sequence of displayable characters with the following restrictions. The sequence
must not :

 begin with a digit or colon character,

 begin with an uppercase character and have a colon in fourth character position (eg: ‹Abc:d›
is invalid),

 be in the form of an integer or decimal number (eg: ‹23›, ‹+23›, ‹2.3›, ‹-2.3›, ‹+2.3e5›,
‹.3E+2›, ‹0.3› are invalid),

 be ‹+›, ‹-›, ‹*›, ‹/›, ‹^›, ‹=›, ‹!=›, ‹<›, ‹>›, ‹<=›, ‹>=›, ‹++›, ‹?›,

 contain whitespaces or the characters ‹'›, ‹"›, ‹,›, ‹;›, ‹[›, ‹]›, ‹{›, ‹}›, ‹(›, ‹)›.

A comop identifier cannot contain characters above U+00FF. Comop identifiers are case-sensitive.
Examples of comop identifiers: ‹FilePath›, ‹tac.var›, ‹#abc%03?›, ‹sub:›, ‹.xyz-3›.

copy (of a stack object)
To reproduce a stack object and its embedded value into another stack object (replacing that other
stack object) such that the reproduced value and the original value are identical. The embedded
value of a stack object that has a resource value is an internal reference to that resource value.
Therefore, if such a stack object is copied, only its reference is reproduced not its resource value.
Consequently, if a stack object that has a resource value is copied to another stack object, both
objects will share the same resource value.

current action
A property of a stack object that indicates its current action when activated.

custom comop number
A positive integer identifying a particular custom module to execute for the comop. The module
exists in the standard TAC library or an external TAC library, and is implemented in machine code
not ETAC code.

D
data dictionary

The dictionary contained in a data object. That data dictionary is identified by the name defined
by the private pre-processor definition ‹_DATA_DICT›.

data form
The form of data contained in a memory stack object. The different forms of data are: binary data,
standard text (encoded as Windows-1252), UTF-8 text, UTF-16 text (little-endian or big-endian),
UTF-32 text (little-endian or big-endian). The default is binary data. A memory stack object
contains an internal member indicating the data form of the memory’s data.

data object
The container of a dictionary used as a programmer-defined data structure consisting of stack
objects identified by name (see dictionary keyword). The dictionary itself is identified by the
name defined by the private pre-processor definition ‹_DATA_DICT›.

dictionary
A stack object having a resource value consisting of a list of internally indexed dictionary items.
The dictionary item having the highest index value in its dictionary is called the ‘topmost’
dictionary item.

dictionary item
An item in a dictionary consisting of a label having the syntax of a comop identifier and a stack
object. A dictionary item need not be unique to any dictionary; a dictionary can contain more than
one identical dictionary item, and any other dictionary can contain the same identical item. A
dictionary item within a dictionary is uniquely identified by an internal index. When a dictionary
item is added to a dictionary, the item gets the next index value in the dictionary. The dictionary
item having the highest index value in its dictionary is called the ‘topmost’ dictionary item.

dictionary keyword
The label of a dictionary item. A dictionary keyword typically has the syntax of a comop
identifier.

dictionary stack
One of the three stacks in the ETAC interpreter that can contain only dictionaries.

duplicate (of a stack object)
To entirely reproduce a stack object and its value into another stack object (replacing that other
stack object) such that the reproduced value and the original value share no resources. Duplication
is recursive. If the stack object does not have a resource value, then the embedded value of that
stack object is reproduced.

E
embedded value (of a stack object)

The value of a stack object that is exclusively associated with that object (eg: integer, decimal, and
string stack objects have embedded values). An embedded value is not shared with other stack
objects, and can therefore be changed independently of the value of those other objects.

error event
The situation that occurs when the action of an active stack object can no longer proceed. In such
a case, the ETAC interpreter intercepts the action and takes appropriate action which typically
consists of ending the main ETAC session unless the error event is trapped by appropriate ETAC
code.

ETAC code
This is ETAC script or TAC binary instructions. A file containing ETAC code typically has an
extension of etac, tac, ptac, or btac.

ETAC expression
A consecutive sequence of one or more script tokens as defined for ETAC expression in the
document ETACProgLang(Official).pdf.

ETAC function
The container of a special ETAC created procedure that creates a local dictionary then assigns the
object stack arguments to that dictionary before calling the programmer-defined procedure. An
ETAC function is typically accessed via a function command.

ETAC interpreter
A computer program that processes ETAC code. An ETAC interpreter essentially consists of a
script interpreter, a binary interpreter, and a TAC processor.

ETAC packed script
ETAC text script that has been pre-processed or expanded, and then compressed. A file containing
ETAC packed script is a binary file, typically having an extension of ptac.

Note that the term “ETAC packed script” is used in the same sense as the word “code”, as in
“ETAC packed script code”.

ETAC script
This is ETAC text script or ETAC packed script. A file containing ETAC script typically has an
extension of etac, tac, or ptac.

Note that the term “ETAC script” is used in the same sense as the word “code”, as in “ETAC script
code”.

ETAC session
The period devoted to the processing of ETAC code by the TAC processor after having been
processed by the script interpreter or binary interpreter (whichever is appropriate). New ETAC
sessions can exist among a given ETAC session for different ETAC code. Therefore, a given ETAC
session can produce a new ETAC session (relating to different ETAC code from the given ETAC
session) so that when the new ETAC session ends, the given ETAC session resumes.

ETAC statement
A consecutive sequence of one or more script tokens as defined in the document
ETACProgLang(Official).pdf for ETAC statement.

ETAC text script
ETAC program code that is in human readable and writable text form. This includes TAC text
instructions. TAC text script containing comops in the form of variable identifiers is also ETAC
text script. A file containing ETAC text script typically has an extension of etac (or ‹tac› if the
file contains only TAC text script).

Note that the term “ETAC text script” is used in the same sense as the word “code”, as in “ETAC
text script code”.

ETAC variable
A dictionary item whose dictionary keyword is in the form of a variable identifier, and whose
stack object is intended to be different at various times during an ETAC session. The ‘value’ of an
ETAC variable is the value of the said stack object. The ‘variable object’ is the said stack object
itself.

evaluate (of a stack object)
The value of a stack object after having been pushed onto a (particular) TAC stack as a result of the
activation of a specified stack object. “Stack object x evaluates to y on TAC stack z” means that
when x is activated, it pushes a stack object containing value y onto a TAC stack z. In some cases,
y just represents the type of stack object pushed onto the TAC stack. For example, “x evaluates to
an integer stack object on the object stack” means that when x is activated, it pushes an integer
stack object onto the object stack (the value of the integer need not be specified). If the TAC stack
is not specified, then the object stack is assumed.

external TAC library
A library of functions implemented by a programmer in the C++ programming language to extend
the functionality of the ETAC programming language. The functions exist in a Windows® DLL
(dynamic linked library), but are used as comops or ETAC functions by the ETAC programmer.

F
function command

A command associated with a dictionary item whose stack object is an ETAC function. When a
function command is ‘called’, then its corresponding ETAC function is executed. When a function
command is ‘activated’, then its corresponding ETAC function is pushed onto the object stack.

function member
A member whose stack object is an ETAC function.

I
instruction form (of a script token)

A script token in the form of a TAC text instruction.

intrinsic command
A command that is associated with a function defined internally to the ETAC interpreter, or a stack
object created by such a command. The activation of an intrinsic command does not involve the
dictionary stack (an intrinsic command is activated directly).

L
lexical analyser

Part of the script interpreter that converts lexical tokens to logical tokens which are then syntax
checked, modified, and rearranged as necessary.

lexical parser
Part of the script interpreter that parses ETAC script into lexical tokens.

lexical token
The smallest unit of information, in the form of text characters, that can be identified by the lexical
parser.

local dictionary
A dictionary, typically existing temporarily, that is identified by the name defined by the private
pre-processor definition ‹_LOCAL_DICT›. A local dictionary is typically used to contain the local
variables of an ETAC function.

logical token
A combination of one or more lexical tokens and internal tokens regarded as a conceptual unit by
the lexical analyser for the purpose of syntax checking and compiling a programming language.

M
main ETAC session

An ETAC session and all other new ETAC sessions produced directly or indirectly from that ETAC
session, but not itself produced from any other ETAC session. A main ETAC session is typically
begun via the RunETAC.exe and the AppETAC.dll computer programs.

member (of a data object)
A dictionary item of the dictionary contained in a data object.

member variable (of a data object)
A member of a data object that is an ETAC variable (or rarely a TAC variable).

N
nominal action (of a TAC object)

The default action of a TAC object.

O
object stack

One of the three stacks in the ETAC interpreter that can contain any type of TAC object. This is
the main stack used by ETAC code.

operator
A script token containing the syntax of a comop identifier. An operator could be in script form
qualified by a preceding ‹&› (eg: ‹&AddVect›, ‹&tac.var›, ‹&#abc%03?›, ‹&add:›, ‹&.xyz-3›) or
instruction form (eg: ‹OPR:AddVect›, ‹OPR:tac.var›, ‹OPR:#abc%03?›, ‹OPR:add:›,
‹OPR:.xyz-3›). An operator is used in an operator expression.

operator expression
A consecutive sequence of script tokens involving an operator and its operands. There are two
forms of operator expressions. One, where the operands are delimited by parentheses, and two,
where the operands are delimited by the start_op and end_op commands. The operator of an
operator expression can exist anywhere within its operand’s delimiters.

Typically, when an operator expression is activated, its operands get activated first leaving the
operator arguments on the object stack, then the operator gets activated and processes those
arguments, returning the resultant stack object on the object stack. For example, the operator
expression ‹(3 + 4 5)› will return 12 on the object stack. That operator expression can be
written as: ‹(+ 3 4 5)›, ‹(3 4 5 +)›, ‹(3 4 + 5)›, ‹end_op 3 4 &add 5 start_op›,
‹start_op; 5; 4; &add; 3; end_op;›. Note that the operator expressions in all but the last
example are activated from right to left; the operator expression of the last example is activated
from left to right.

An operator expression can contain nested operator expressions as some or all of its operands, but
each operator expression must contain exactly one operator at the top level.

operator stack
One of the three stacks in the ETAC interpreter that can contain only operator stack objects.

P
procedure

A special sequence, which, when activated, the elements of that sequence get activated. The
elements of a procedure are typically command stack objects.

procedure expression
A group of script tokens that creates a procedure.

R
replicate (of a stack object)

This is the same as duplicate, except that procedures at all levels are copied rather than duplicated.
The reproduced value and the original value share no resources except for procedure resource
values which are shared.

resource value
The value of a stack object that can be shared with other stack objects of the same type —
sequence, procedure, dictionary, and memory stack objects have sharable resource values. A
resource value is internally referenced by the stack object; that reference itself is the object’s
embedded value (the reference itself is not available to the programmer, only the value being
referenced, the resource value, is available).

S
script form (of a script token)

A script token not written in the form of a TAC text instruction. This is a more natural and
intuitive style of expressing script tokens.

script interpreter
The part of the ETAC interpreter that processes ETAC script. The script interpreter consists of a
lexical parser, a script pre-processor, and a lexical analyser.

script pre-processor
The script pre-processor is that part of the script interpreter that is responsible for pre-processing
ETAC text script.

script token
A consecutive sequence of one or more lexical tokens regarded as a unit for the purpose of defining
the syntax and semantics of the ETAC programming language.

sequence
A stack object having a resource value consisting of any number (including zero) of indexed stack
objects understood as a unit. The indexed stack objects are the ‘elements’ of the sequence. The
first element begins at index one, the second element is at index two, and so on. The number of
elements in a given sequence is variable but limited by available memory. The elements of a
sequence can be any type of stack objects, including sequences.

sequence expression
A group of script tokens that creates a sequence when activated.

sequential reverse-flow activation
The processing of token statements in ETAC text script, where the script tokens within each token
statement are activated from right to left, but the token statements themselves within the ETAC text
script are processed sequentially from left to right.

stack object
Any one of a number of certain groups of TAC objects.

standard TAC library
This is a library of custom comops that are implemented internally to the ETAC interpreter. Each
comop has a unique custom comop number. Custom comops must be loaded via the execute custom
TAC text instruction or the custom command before they can be activated (this is normally done
automatically).

subsequence
A sequence that is a direct element of another sequence.

T
TAC binary instruction

A binary form of a TAC text instruction. TAC binary instructions exist in binary files. Any ETAC
code can be compiled into TAC binary instructions by the ETAC Compiler program. A file
containing TAC binary instructions typically has an extension of btac.

TAC error code
An error code produced as a result of an error event or produced explicitly by ETAC code. The file
ETACErrorCodes.pdf contains a list the possible TAC error codes.

TAC object
An entity that has the capability of existing on a TAC stack, and consists of a type and
corresponding value along with an indicator of some suitable action to perform.

TAC processor
Part of the ETAC interpreter that creates a TAC object from each logical token passed to it then
activates the TAC object according to its type.

TAC stack
An object stack, dictionary stack, or operator stack.

TAC text instruction
A human readable text instruction of the form ‹type:argument› where type is any one of: INT, DEC,
STR, LBC, LBO, CMD, OPR, MRK, MEM, NUL, or EXE, and argument is an appropriate argument for
type. TAC text instructions may exist in ETAC text script files or in files containing only TAC text
instructions. The ETAC Compiler program can compile ETAC code to TAC text instructions. A
file containing TAC text instructions alone typically has an extension of tac.

TAC text script
TAC program code that is in human readable and writable text form. This includes TAC text
instructions. TAC text script does not contain ETAC program code (ETAC expressions or ETAC
statements other than assignment or allocation statements). A file containing TAC text script
typically has an extension of tac.

Note that the term “TAC text script” is used in the same sense as the word “code”, as in “TAC text
script code”.

TAC variable
A dictionary item whose dictionary keyword has the syntax of a comop identifier, and whose stack
object is intended to be different at various times during an ETAC session. The ‘value’ of a TAC
variable is the value of the said stack object. The ‘variable object’ is the said stack object itself.

token statement
An arbitrary consecutive sequence of one or more script tokens where the final token in the
sequence is followed by a comma ‹,›, semicolon ‹;›, right square bracket ‹]›, or right brace ‹}›.
A token statement begins after a comma, semicolon, left square bracket ‹[›, or left brace ‹{›, or
may begin at the start of ETAC text script.

U
u-char

A Unicode® scalar value. A u-char is equivalent to a UTF-32 code unit. The size of a u-char in a
string is two or four bytes (one or two w-chars, respectively). However, a u-char size as a
character is considered to be one unit in length. Note that a surrogate pair is one u-char (even
though it is two w-chars). A surrogate code point is not a u-char (it is a w-char).

V
variable identifier

A consecutive sequence of characters beginning with an alphabetic character (‘a’ to ‘z’ or ‘A’ to
‘Z’ or exotic Latin characters such as ‘Ä’), an underscore (_), or an ‘at’ character (@). The
subsequent characters are alphanumeric (alphabetic or ‘0’ to ‘9’) or underscore. Note that, by
convention, variable identifiers beginning with an ‘at’ character, or an underscore followed by an
alphabetic character or underscore, are reserved for system use. An ETAC programmer, therefore,
is limited to defining variable identifiers containing alphanumeric characters and underscores, with
the first character being an alphabetic character, or the first two characters being an underscore
followed by a digit character. In addition, none of the strings “if”, “then”, “else”, “endif”,
“when”, “is”, “endwhen”, “do”, “repeat”, “from”, “to”, “step”, “with”, “of”, “while”,
“exitdo”, “exitdo_if”, “donext”, “donext_if”, and “void” can be a variable identifier.
Variable identifiers are case-sensitive.

The exotic Latin characters are: ª, ², ³, µ, ¹, º, À, Á, Â, Ã, Ä, Å, Æ, Ç, È, É, Ê, Ë, Ì, Í, Î, Ï, Ð, Ñ, Ò, Ó,
Ô, Õ, Ö, Ø, Ù, Ú, Û, Ü, Ý, Þ, ß, à, á, â, ã, ä, å, æ, ç, è, é, ê, ë, ì, í, î, ï, ð, ñ, ò, ó, ô, õ, ö, ø, ù, ú,
û ,ü ,ý, þ, ÿ. Those characters should be used only if necessary.

variable object
The stack object identified by a TAC variable, ETAC variable, or member variable.

W
w-char

A Unicode® code point in the BMP (Basic Multilingual Plane). A w-char is equivalent to a
UTF-16 code unit. The size of a w-char in a string is two bytes. However, a w-char size as a
character is considered to be one unit in length. Note that a surrogate code point is one w- char.

	Contents
	Document Conventions
	1. Introduction
	2. ETAC Code Sample
	3. Features of ETAC
	4. Sequential Reverse-flow Activation
	5. ETAC – Operational Overview
	6. Stack Objects
	7. The TAC stacks
	7.1 The Object Stack
	7.2 The Dictionary Stack
	7.3 The Operator Stack

	8. Comments
	9. Variables
	9.1 Allocating Variables
	9.2 Assigning Variables
	9.3 Retrieving the Value of a Variable
	9.4 Global and Local Variables

	10. Object Types
	10.1 Numbers and Booleans
	10.2 Characters and Strings
	10.3 Memory Objects
	10.4 Sequences
	10.5 Dictionaries
	10.6 Data Objects
	10.7 Procedures
	10.8 Functions
	10.9 Other Object Types

	11. Operator Expressions
	12. Flow Control
	12.1 Conditionals
	12.1.1 If-then ETAC Statement
	12.1.2 If-then ETAC Function
	12.1.3 If-then Commands
	12.1.4 Choice ETAC Statement
	12.1.5 Choice Commands

	12.2 Iterations
	12.2.1 ETAC Iteration Statement
	12.2.2 Command Iterations

	12.3 Exiting Code Blocks

	13. Object-oriented Programming
	14. Data Input and Output
	15. External Code Execution
	16. Derived Syntax
	Bibliography
	Glossary

