ETAC: Interacting with C++

—)

ETAC Interface Version: 1.2 (beta)

Other Related ETAC Documents

ETAC_Preliminaries.pdf Preliminaries before using ETAC
ETACOverview.pdf An Overview of ETAC
ETACProgLang(Official).pdf The Official ETAC Programming Language
RUnETAC.chm Run ETAC Scripts Help

ETACCompiler.pdf The ETAC Compiler

ETACCompiler.chm ETAC Compiler Help

ETACErrorCodes.pdf ETAC Compilation and Run-time Error Codes
FunctionsETACScriptLib.pdf Functions ETAC Script Library

Legal Information

AppETAC, ETAC, and 7L (the ETAC logo) are unregistered trademarks (™) of Victor Vella for
computer software incorporating an implementation of a computer programming language .
There may be other owners of the “ETAC” trademark used for other purposes.

Microsoft, Windows, and Visual C++ are registered (®) or unregistered (™) trademarks of
Microsoft Corporation.

Unicode is a registered trademark (®) of Unicode, Inc. in the United States and other countries.

The author of this document shall not be liable for any direct or indirect consequences arising
with respect to the use of all or any part of the information in this document, even if such
information is inaccurate or in error. The information in this document is subject to change
without notice.

ETAC: Interacting with C++

Victor Vella

Published by Victor Vella
(1 August 2020)

First Published: 28 April 2018
Revised: 1 February 2019
Second Edition: 1 August 2020

Copyright © Victor Vella (2018-2020). All rights reserved.

Permission is hereby granted to make any number of exact electronic copies of this
document without any remuneration whatsoever. Permission is also granted to make
annotated electronic copies of this document for personal use only. Except for the
permissions granted, and apart from any fair dealing as permitted under the relevant
Copyright Act, no part of this document may be reproduced or transmitted in any form
or by any means without the express permission of the author. The copyright of this
document shall remain entirely with the original copyright holder.

Preface

This document is part of the main ETAC document (ETACProgLang(Official).pdf) for describing how
to write C++ code that communicates with code written in ETAC™ (pronounced: E-tack). Since
ETAC is released only on the Windows® operating system, I am assuming that the reader is
confident in writing Windows®™ programs in C++. I have chosen C++ for the communication code
rather than C because ETAC itself is written in C++, and also because C++ offers certain
advantages over C. However, there is one drawback in the particular way that C++ class
instances are used for communicating with ETAC. Because of the enormous advantages, |
decided to use the C++ class virtual table system for implementing the communication from C++
code into the ETAC interpreter. This requires that any C++ compiler used must be compatible
with the one used to compile ETAC itself (Microsoft® Visual C++* compiler version 7.1).
Fortunately, at the time of this writing, Microsoft® provided a compatible compiler free for use
(subject to terms and conditions).

This is the second beta release of the intercommunication system between C++ and ETAC, so
naturally some adjustments will probably need to be made in the first few releases. This
document describes the first Unicode® release of the communication code mentioned above with
basic support for the full Unicode codespace. Normally, the ETAC interface version of the
communication code would be increased, but for practical reasons I decided to retain the same
interface version number as before (version 1) — the previous version 1 is now deemed defunct.
This version 1 of the ETAC interface is different to, and not compatible with, the previous
version 1. I have introduced some new functions, and modified some previous ones, in this new
interface.

Victor Vella

Perth, Western Australia
1 August 2020

Contents

PO ACE. . cciiiieeeeeereeeeeeeeeeeeeeeesseseeeseesssnnes \'4
CONEEILS cceeeeeeieeerereeeecceeeeeerreseeeessseessnee vi
Tables and Diagrams..........ccceeerenicensnsensnensinsissisesissessssssisieissessessessesssssssssseses X
D OCUMENTE CONVENEIONS. .ceeuueeeeiiierreeeeneeceeeeeeeeseseesecsesss x1
| o Rwa e Yo LV Tad o 10 o VRN RUPURRRRRRRNE 1
1 The Principles of ETAC and C++ Interaction..........coceevuccensensensucsncsensensucsncnnes 3
1.1 The ETAC INEEITACE ..o oo 3

1.2 ETAC Code and External TAC Library Interaction.........ccccceecuierieeciienieniiienieeiiee e 5

1.3 ETAC Code and Application Program INteraction...........cceceveevuerieneenienieneeneeneeeneens 6

1.4 C++ Code and External TAC Library Interaction..........ccceeceevieniieeiiieniieeniieeeeiiee e 7

2 Programming Guide......iivinririninenisniinnisininiiensisinninecsnesssinsscssssssssessesssssees 9
2.1 C++ Compiler REqQUITEMENTS....c..couiiiiiiiiiiieiieieeteeet ettt e 9

2.2 Creating an External TAC LibDrary.....cococoeciiiiiie ettt e e e eeveee e e 9
2.2.1 Requirements for Creating an External TAC Library......cccccecceveiiiiieniinenienieeieeene 10

2.3 Creating an Application Program to Use ETAC........ccccoviiiiiiiiiiniieeeeeeeeee e 13
2.3.1 Preliminaries for an Application Program to Use ETAC.......cccocovvivciieviiiieeeee 13
2.3.2 Requirements for Incorporating ETAC into an Application Program..................... 14
2.4 Interacting with the ETAC INterpreter......cccoeciiriieiiiiiieeiiecie ettt 17
2.5 Calling ETL Functions from CH......ccociiiiiiiieiieieeieeeee e 20

3 Programming Reference......iinsninsinenininnnnensensinencseesesessessessssseeses 22
3.1 THhE ETAC INTEITACE ciueenneee e e e e et e e e e e e e e e eeeereeeeeaeeeranaaeaes 22

3.2 RS OUTICE I eI aCES . e eieeieeee e et e e e e e e et e e e e e e e eaeeeeeaeeeranaaees 22

3.3 Pre-processor DefiNItiONS....c.uiiiiiiiiiieiiie ettt e e e e 22
3.3.1 TAC ODJECTE TYPOS . cuiieiiieiieiieeit ettt ettt et e st e st e ste e bt esabe e bt e sabeenbeesaeeenbeesseeenseennnes 22
332 INtrinsic CoOmMMANA COAES .cuumnnnnieeeeeeieee e e et e e e e e eeeeeereeeeeaeeenaaaeee 23
3.3.3 INtrinsic OPerator COAES. ..ccuiiiiiiiiiiieeiteie ettt ettt et e et e e e baee e eneees 24
3.34 TAC ODBJECT ACHIONS . .ccutiiieiiieeiieeeiteeeieeeetee et e e rte e et e e steeesbeeesseeessseeensseeensseeenssaesannns 25
3.3.5 TAC ODbject INAICALOTS.....eiiiieiiieiieeie ettt ettt ettt et e sabe e e 25
3.3.6 Logical Boolean ValUes......cccoocuiiiiiiiiiiiecieeeieece et eee e sae e seae e saee e 26
3.3.7 Dictionary Binary F1ags......cccooiiiiiiiiiiieeee e 26
3.3.8 Operational DefiNItIONS......ccviiiiiieiiie et e e s e e e e areeeeeeennenes 26
339 Data FOorm INdiCatorsS......ooooiiiiiiiiii e 26

3.4 IMACTO D ETINITIONS ..eeeiiiiieiieiiieiieeeeeeeeeee ettt et e e et e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenaaaas 27
3.4.1 IMACTO SUMMATYvvieeiiieeiieeeieeeiee et e et e et e et e e eteeesabee e taeeesaeesnsaaeeesesssseeeesennnsenens 27
3.4.2 RETUITE COAE IMACTOS e s e e e eeaaaeeeeeeenannaes 28
COERROR ... e e oo o2 o2 e 2o e e e e e e e e e e e e e 28

COSU G CESS oo 29

CORTINCODE .o eee e e e e e e e 2o e e e e e e e e e e e ee e e e 29

COSET _LIBERR ..o eveoeeeeeeeeeeeeeeeeeeeee e e ee e e e e a2 ee e st s e s e e e e s ee s e e ee e e s e s ereseeeone 30

343 Resource Interface DefINition MaACTOS .couuuumueeeeeeeeeeeeeeee e e e e e eeeeeeeeeeeaaeees 30
COSTACKOBY oo 30

COSTRING ..o e e oo ee 2o 2o e e e e oo e e e e e e e e e e oo e e s e s 30

COMEMORY oo e 31

COSEQUENCE ..o oo e oo oo e o2 oo e e e oo e e e e e e e eee et ee e e e 31

CODICTIONARY oo oo e oo 31

CODATAOBUECT ... e e e s h e b h s e b e e b s r e e e e s ne e 32

3.4.4

3.4.5

3.4.6

3.6
3.6.1
3.6.2

3.7
3.7.1
3.7.2

W W W
oo OO0 OO
N —

(o] AV 0T OO

ccNEW_STACKOBJ....

ccNEW_STRING.......

CONEW _MEMORY ...t ee e e e e e e eeee s e e e e eese e s e ee e s e s es e ee e e e e e e e e e e e e s e et eeee e e eseeere

CONEW _SEQUENCE ..o e seeseeee e e e e e e s e s e s e s e eeesees e ees e ee s ses e ees e eesesees e ees e se s seeeeesese e seeseene

ccNEW_DICTIONARY.....

CONEW _DATAOBUIECT oot eeeeeeeeeeeeesee e se e seeee e seeses s ee e eee e ees e ee s seseeees e ees e eee e ees e se s e eeeeesese e seeeeene

[oTod ol 24 =1 OO PPPRPURRPRt
Member Function EXECULION IMaACTOS ... eeeiieeieeeee e eeeeeeeeee e e e e e e e e ereaaees 35

ccCALL

COCALLTAC .o oo e e e e e e e e e e 2o e e oot e oo e e ee e e e 36
S tACK A CCESS IMACTOS eeeeeeeeeeeeareeeeeeeeeaaaaaaees 37

o] 0 1 I SRR 37

[oTod = U157 = F RPN 37
MISCEIIANEOUS IMACTOS ... et e e e e e e et enaaaaes 37

FeYeTc] =103 - =3NS 38

COTAC ClaSS i, 38

FUNCHION SUMIMATYoiiiiiiiiiiicce ettt vee e e et e e e e e s naaraaeeeennnnneas 38
Y (5350 Lo 1<l SR D N s Tot 5 (e} s LT RORRTRRRRIR 39

ccCountToMark..

ccDeleteDict........

[oTed =5 =11 071 1 [« FEUE RO UOUUUUPROS
[oTe] =3 =T o] = I OSSO TSR PP PP
ccGetDict
ccGetDictOfltem
(1o CT=1 (0] o [1Y/ o 1= O OSSPSR UR USROS
ccGetTACIF..... .

ccNew...........
ccPop......
[oTod =AU] | DRSO URURPUPRIOS
o3 =1 1= o 1 PPN
[oled 3 LCT1=T: 1Y TSSO
(oo F: e @ 1 o] T SRRSO 46
FUNCtion SUMMATYc.coociiiiiiiiiieiiee ettt bae e e eeenees 46
AV <3 001 o1 A 2 0 s Ted 5 10 o - TS 47
e 107070} 74 @] FU TSP PPRT 47
o] BIU] o Te3=1 {10 o FO T PO TR P PP RPPPOP 47
COSIIINE ClASS.cuutiiiiiieeiieeiee ettt e ettt e et e e et e e s te e e tbeeesbe e e saeeesaeeensaeasssseesssseessseeensseeensseennns 47
FUNCtion SUMMATYc.cooiiiiiiiiieiiee et et e et eeeaaeeenees 48
J\Y <3 001 o1 A 2 0 s Ted 5 10 o - TS 48
strAppend
N1 T [O TP PP PU T PP PR PRRPP
DY L=Y (=1 { OSSOSO 49
strFindAndRepStr.. ...50
strGetChar.............. ...50
strGetStrBuff... ...50
A CToY 8T (i { ST RTPPI 51
[(g R T=T €5 { RS URUPRRPPON 51
strLength
[(g eV O] o =T PR RROUPU PPN 52
SETREIEASESIIBUTT ...t e e e e e et e e et e e et e e eab e e e aaeeeaeeeeaaeeabeeeaaaeeebeeeanreeenaeas 52
Strotrip...ceeee
strUCharCount...
[(AL @4 T= T O o TU o | SO PRSU PR
CCMEMOTYBIOCK ClaSS..ccuiiiiiiiieiiieciie ettt ettt e e e e e saaae e e e e ennaaeas 54
FUNCtion SUMMATYcoooiiiiiiiiiiiiieie ettt e et e e e e enees 54
J\Y <3 001 o< A 2 0o Ted 5 1o o - TSR 55
mbAllocate.........ccccceeuenee.
mbAppendMem..
mbApplyBOM......
M C OPYIMEM ...ttt ettt ettt e a e e et et e et e et e et e e et e e et e et e ean e et e et et et r et eeeean
(01 @3V21 D E=1 - i I OSSPSR
mbDuplicateMem...
0] o] =5t o Yo o SR SPSUPPRPRPRY
(001 o1 CT= DY E=Y o { RS RROPUPRRRR SRRt
mbGetDataSize..
mbGetErrCode...

(0] TN A =Y o (1S 4= TSP RPPPP

3.9
3.9.1
3.9.2

3.10
3.10.1
3.10.2

3.11

3.12
3.12.1

3.13.2

3.14
3.14.1

3.14.2

3.15
3.15.1

001 o] a0 oo o S UPUURURPRPPY 59

(001 o1 L E-T=T o SRS O USRS UPRRRRRRIOt 60
mbLoad
MBDREAAWNINOIEFIIE ettt e e ettt e e e et e e e e et e e e e e tae e e e e eetbeeeeeaeaeaeaeaeaaaaeaaaaaaaes 61
LaaY o] 2= o= 1 =] o] o o P SPPPRPRY 62
mbRepDstPath....... ...63
mbRepSrcPath............. ...63
mbReserveExtraMem.. .64
(01 1T ST TOTSPR 64
(0] SRS TCT DY €= I .4 S SUPURRRPRNY 64
MBDWWITEWNOIEFIIE ettt e e ettt e e e sttt ee e e s beeeee s asteeee e e sseeeeeeansbeeeeeanssaeeeeaansneeeeennnnes 64
COSEQUENCE ClASS...uiiiiiiiieiieeiieeie ettt ettt e et e e bt eeibe e teesaaeesseeesbeeseessseenseesnseenseeeennses 66
FUNCHION SUMIMATYoiiiiiiiiiiicce ettt e e eeaa e e e e e s nnnsaeeeeennnnnes 66
MEMDET FUNCLIONS . ..eiiiiiiiiie ettt eee ettt eete e e et e e e eeaaeeeeeeaaeeeeeeaaeeeeeennnnnns 66
7Y o] 1T a Lo IS T=To FU OO ST P PO PUPPPRORT 66
1 07e] o) 2 T=To PSPPSR 67
sDeleteAll..... .67
sDeleteEIms.... ...67
sDuplicateSeq.... .67
(1 C 1= SO USROTRRTPPI 68
S G B E M T Y P ettt ettt h e h e h e b et h e e bt ae e ea e e e e et a e e he e et et e et nar et e e e ene s 69
slnsert
[V| SRRSO URUSPRPPN
I T4 TP PPPPPPP
CCDICTIONATY ClaSS..eiiuiiiiiiieiieiiie ettt ettt et e e et e st e e bt e ssaeesbaessseenseessseeennnes 71
FUNCHION SUMIMATYoiiiiiiiiiiiicie ettt e e e e ta e e e e e e naasaeeeeeennnnes 71
MEMDET FUNCHIONSiiiiiiiiiie ettt eee ettt eete e e et e e e eeaaeeeeeeaaeeeeeeaaeeeeeennnnnns 72
dCopyDict

dDeleteAll

[] DLy =Y (=Y L =Y o o TSSO PUPR
dDuplicateDict.
dExecltemObj..
dFindltem............
(o€ T=T{ BITed { F= Yo OO TP PR UPT PP RPSRPPRRO
[o [L=y BT Te 4\ F=T s = TSSOSO RR ST PPPPPPPR
dGetltemName...
[LT 4R =101 @ o F RSOSSN
(oL T=T 4R d=T0 0 1 IS o= T T PO TP PP UPPPROP
dNewltem................
dNumSameltems...
dPutDictFlags........
AP ULIEEIMOD] ...ttt ettt ettt ettt et e et e et e e seeseeseess e s e saeeseebeesseseens e s e seeseeseeaeensenneeteeaeeeneeenns 79
(o RSN A B I Lo 41N F=T 0 L= PO RS SS PR 80
dSetltemName.... ...80
[0 ST 4= TS SSRRTPPPPPPP 80
CCDAtAODJECE ClaASS..uiiiiiiiieeiiieiieeie ettt ettt ettt teestaeesb e e seesnbeesseeenseensneennes 80
Helper FUNCHONS. ..cuiiiiiiiiieiiecie ettt ettt e e beesbaeesbeesseeenseennnes 81
Data Object HeIPerS. ..o oiiiiiiiceiie ettt st e e e e e e enns 81
ccMakeDataObj
[oled CTY B L= | -1 B 1T o1 RSO UPUPPUPPION
External TAC Library FUNCHIONS......ccoiiiiiiiiieiie et 83
MaAPPING FUNCHION.....iiiiieiiieiieiiecie ettt ettt ettt e et e et eesbeesebaeeensbaeeennseeennnes 83
[E=Te 1= (07 01 =T o] 71 o Ve FUN OSSO P PSP UPOPPPPPRRRP 84
ETL FUNCHIONScoiitiiiieeeieee ettt eete e eete e et e et e e e eeaaeeeeeeaaaaasaeeeaaeaaeeeeeeenan 85
| I V] o T3 { o] o [U UURURPRPRNY 85
APPETAC FUNCHIONS. ...tiiiiiiiciiie ettt ettt esteeeite e et eesaaeeeaeeesnaeeesnseeesaseeessnnssneeaenanns 85
INnitialisation FUNCHIONooiiiiiii it e e s 85
[€= ToS 1= TN o] o] = 1 OO OSSP RTTOOP PSP OPPPPROP 87
AUXIIATY FUNCHIONS ...ttt ettt et e be et e s beeseeenneens 87
etacProcessTACError
(= =T od 2= (=T -SSR
B ACS D EDUG ...ttt e a b a et eae e e e ettt e s
(=122 Tets] g o TN T AN o Yo 1 UL SO ORRSRPPPRPPP
Application Program Call-back FUnction..........ccceceeviieniieiiieniieiieiecieee e 89
(OF:1 U B o F: Yo ' 214 [od 5 1o s WA 89

Call-back Function

Appendix A: Compatibility ISSUES......ccccvuvvererenrinrireiriireninininninninninineseseeseeseene 90

A.l INEEOAUCTION ..ttt b ettt ettt st e bt e bt e e bt e enaneen 90
A2 Workaround for Non-MSVC Compilers........ccoecveriieiiieiieeiiieieeieeiie et 90
A3 Possible Future Compatibility Resolution...........ccoeceeeiieniiiiiiniiiiieecieeeeeee e 94
BibliograpRhy.....ciiiiiniiiiiiiiniiniiincinnniininiiinesssesesssssssssssssssssessessesessessens 95

L@ (0T ¥ o 96

Tables and Diagrams

DOCUMENT CONVENTIONS.....ttiiiiiitieiieeiteitt ettt ettt et ettt et e sat e e bt e s bt e e bt e sateebeeeabe e bt e sabeebeessbeenbeesaseenneee X1
The ETAC and Resource INterfaces......cccuiiiiiiiiiiiieciieiieete ettt ettt et sveetae e enaaaesesbaaeenes 4
[ustration of ETAC Code and ETL INteraction........c.ccccverieeiiienieeriieeieeiieeeeeieeeieereesereeeseneeeseneeeenes 5
[llustration of ETAC Code and Application Program Interaction..........c.ccceeveeiieriienieeneenieeieesveee s 6
[ustration of C++ Code and ETL INteraction........cccueecuieiiieiiieiieeiierie et ereeieeeeeeieeeveeneesneeseeenes 8
TAC ODJECE TYPOS e euuieiuiieiieeiieeiteeeteeiteeeteeteestteebeessteeseessseasseessseasseessseassaessaeasseessseenseesseesnseenssessseessseeanns 23
Intrinsic ComMMANA COAES.....ccuiiiiiiiiiiieeiieiie ettt ettt e e b e et e e be e teeesbeessseesseesseeesssaeeasssaesansseennns 23
INtrINSIC OPETAtOr COAES..ocuuiiiiiiiiiiiiieiieeie ettt ettt e et et eseeebeestteebeesseeesseessseenseesssessseenssesnseenseaans 25
TAC ODJECT ACEIONS...utieiieeiietieeieeitteeteertee ettt esteeeteesteeesseesseessseessaesssaesseessseesseessseasseesssessaessseaseesssseesns 25
TAC Stack INAICATOTS c.eeuiiiieiieiiet ettt ettt ettt et e bt e st e s et e bt et e sseenbeentesseennneenee 25
BOO0LEAN VAIUES....couiiiiiiiieieeee ettt ettt et s h ettt sa e bt et sat e bt et e n e e te e snbeeenneeenee 26
Dictionary BINary FLAES......ccouio it et ettt e et e e et e e e tae e s naeeeenbeeennbeeennnes 26
Operational DefiNItiONScccuiiiiieiieiiecieete ettt et e steeebe e bt eesbeesaesebaesseeessseeeessseeeassseeeensees 26
Data FOrm INAICAtOTS.iiiiiiiieiiiiiie ettt ettt ettt e et e et e e beesteeesseesseeessaessaeesseeesnsseaesnsseeessseeennes 27
Pre-processor MaCTO SUMMIATY ...ccc.viiiiiiieiiieiiiieeeieeeiteeeiteeeiteeetteeeteeeseaeeenareeasseesssaeessseeessseessnseesnnnssees 27
CCTAC Class FUNCHION SUMMATYuviiiiiiiiiiiieiiie et eriee ettt et esiee e et eesaeeesnbaeesnseeennseeennseeennnes 39
ccStackObject Class FUNCHION SUMMATYccviiiiieiiieiieeieeiee e etteeteeieesteeseeeaeesseessseesseessseeessseeennes 47
ceString Class FUNCHON SUMMATYoiiiiiiiiiiiciieee ettt e et eeere e s s et e e e e e eennaeeeeeas 48
ccMemoryBlock Class FUNCtion SUMMATYcccuiiiiiiiiiiiieiiecieesie ettt eesnaeeenraeeeens 54
ccSequence Class FUNCHION SUMMATYcoiiuiiiiiiiiiiiieiiieeeieeeeieeeeieeesteeesteeeseteeeeaeeseaeeseneesnsaeesnseesnnnens 66
ccDictionary Class FUNCION SUMMATYccviiiiiiiiiiieiieeeeeecite ettt et e et e e siaeesaeeesnaeeeenns 72
ccDataObject Class FUNCHION SUMMATYccuviiiiiiiieiiieiieeieeieeeee et esteeteesteeesreeseaeeesaseeeeseseeesssseeensnes 81
APPETAC Start-up Parameters......cccuieeiiiiiiiieeiiii et ertee ettt ette e stee e s teeesebeeesnbeesenseeesseesnseeesennes 86
APPETAC StaArt-Up FLagS...ocouiieiiiiieeiieie ettt ettt e bt e s saeeteessaeesssseeesssaeessssseeennseeans 86

Virtual Tables fOr ET A C TN eI aCES .. e s e e e s e e esesasaaaaeeeeenennns 91

Document Conventions

The following conventions are used in this document.

Symbol

X

U+x
X Xn
text
text

text

Document Conventions

Meaning
separates x as a unit of information from the surrounding text.

ellipsis represents omitted text (as usual).

represents a Unicode code point where x is in hexadecimal notation.

X---X represents a number in hexadecimal notation (X is a hexadecimal digit).
maroon coloured italic text is a link to the text’s definition.

underlined green text is a link into the document.

bold green text is a link into the document.

indicates the end of a block of document text.

Introduction

This document redefines version 1 of the ETAC™ Interface, which is compatible with the ETAC
Programming Language version 1-1 implemented in programs RunETAC.exe and AppETAC.dlI
version 3-0-6-ena.

(Australian English)

Important Note

Version 1 of the ETAC Interface has now been redefined for compatibility with Unicode®. The
previous version 1 of the ETAC Interface (non-Unicode) is now defunct and incompatible with
RunETAC.exe and AppETAC.dIl version 3-0-6-ena (Unicode). Programs written with the previous
version need to be recompiled for Unicode (and perhaps modified) for use with the redefined
ETAC Interface version 1.

ETAC™ (pronounced: E-tack) is a syntactically simple but extremely versatile dictionary and
stack based interpreted script programming language. The details of that language are described
in the document titled “The Official ETAC Programming Language” (ETACProgLang(Official).pdf)
which is a prerequisite for understanding this document. In addition, the reader needs to be
familiar with Windows® programming in the C++ language since ETAC is released only on the
Windows® operating system using the x86 architecture (can also run on the x64 architecture).

This document is for C++ programmers who want to implement new comops in C++ and\or who
want existing or new C++ application programs or dynamic linked libraries (DLLs) to interact in
both directions with the ETAC interpreter.

A computer programmer familiar with the C++ programming language can extend the native set
of comops via external TAC libraries (implemented as dynamic linked libraries) by creating
library functions (ETL functions) written in the C++ programming language that are activated by
the said comops. This allows an ETAC programmer to be able to create TAC objects with any
desired data, based on the values of other 74C objects. It also allows an ETAC programmer to be
able to manipulate and access data in the operating system via the external TAC library.

ETAC is also designed with the capability of controlling the internals of an application program
originally written in the C++ programming language. The application program needs to be
constructed to incorporate that capability. For example, when linked to an application program
via a special ETAC dynamic linked library (AppETAC.dIl), the ETAC interpreter can communicate
with that program via comops to create data structures and carry out functions in that program.
Those comops, which exist in ETAC code, can execute subroutines within the application
program. The advantage of this is that an ETAC text script file can be created, by a user, to use
the functionality existing within an application program. A typical example of where such a
system can be used is the creation of macro-like instructions, written in ETAC text script, by a
user to control a word processor or text editor designed for that purpose. Thus the ETAC
programming language can be used as a macro language for suitably designed application
programs. An application program can also be designed to execute ETAC instructions via C++
interfaces, that includes executing ETAC code files.

ETAC has basic support for the full Unicode® codespace (U+0000 to U+10FFFF). However, the
support is only up to the Unicode scalar value level; character strings are not normalised. ETAC
supports only strict conformance to the UTF-8, UTF-16, and UTF-32 encoding schemes; unpaired
surrogate code points are not supported (character strings must be well-formed Unicode strings).
For certain functionalities or parts thereof, only UCS-2 (BMP Unicode scalar value) characters
are supported.

Changes from Previous Publication

The following sections indicate the changes made in this publication from the previous
publication (1 February 2019). Most of the changes are adaptations to Unicode®.

New Items

strAppend, strUCharCount, striWCharCount, mbApplyBOM, mbCvtDataTo, mbGetErrCode,
mbRepDataForm, mbRepDstPath, mbRepSrcPath.

Modified Items

strAppend, strAssign, strDeleteStr, strGetChar, strInsertStr, strPutChar,
mbExport, mbImport, etacSetDebug.

Enhanced Items
strStrip, mbReadWholeFile, mbWriteWholeFile.

1

The Principles of ETAC and C+ + Interaction

This chapter presents an overview of the principles of the interaction between programmer-
defined C++ code and ETAC code. The purpose of this chapter is to present the concepts
involved in the interaction, not the actual methods or techniques. The diagrams in this chapter do
not necessarily represent the actual implementation of the intercommunication between ETAC
and C++.

1.1 The ETAC Interface

Apart from a few management functions, the ETAC interface is the only means by which C++
code can initially interact with the ETAC interpreter. The ETAC interface is defined by a C++
class called ccTAC, containing only virtual member functions which point directly into the ETAC
interpreter which exists in AppETAC.dIl. An instance of the ETAC interface is created in the ETAC
interpreter, and passed to C++ code either as a pointer argument of a C++ function, or returned as
a pointer from AppETAC.dIl via the function etacSetAppETAC () (pre-existing in AppETAC.dIl). C+
+ functions that receive a pointer to an ETAC interface exist either in an external TAC library
(such functions are called “ETL functions”) or in a programmer designed main application
program (there is only one such function called the “call-back function™). ETL functions or the
call-back function can be called either from ETAC code, or from C++ code; in both cases the
functions access the ETAC interpreter through the pointer to the ETAC interface. The ETAC
interface includes the ability to push and pull the value of the topmost stack object on the object
stack from or into C++ variables.

Some stack objects have a resource value. The data in the resource value is maintained by the
ETAC interpreter, but can be accessed via an appropriate resource interface. An instance of a
resource interface is created in the ETAC interpreter, and passed to C++ code as a C++ pointer
via some member functions of the ETAC interface or other resource interfaces. A resource
interface is defined by a C++ class containing only virtual member functions which point directly
into the ETAC interpreter. A resource interface also contains an internal reference (not available
to the C++ programmer) to a resource value. Those member functions internally access the
resource value via the internal reference (called a “managed reference”). A resource interface
for a string stack object does not contain a managed reference, but contains the actual string
itself.

Sequence, procedure, dictionary, and memory stack objects have resource values, and therefore
corresponding resource interfaces. A string stack object also has a resource interface but no
resource value as such (although a string value requires memory that is managed by the ETAC
interpreter, which is the reason that it needs a resource interface).

The C++ class names of the resource interfaces are: ccStackObj (for a TAC object), ccString
(for string, command, and operator stack objects), ccSequence (for sequence and procedure
stack objects), ccMemoryBlock (for a memory stack object), and ccDictionary (for a
dictionary stack object). The value of other types of stack objects (which do not have
corresponding resource interfaces) are contained in C++ variables of the following types: ccINT
(for integer, intrinsic command, intrinsic operator, mark, null, and EXE stack objects) and ccDEC
(for a decimal stack object).

A managed reference is an internal reference to a resource value using a reference counting
system. The system does not detect circular references — resource values directly or indirectly

containing references to themselves are not internally deleted until AppETAC.dII is unloaded.
Circular references should therefore not be used unless the circular reference loop is broken
before the resource values are destroyed. (It is intended that some future version of AppETAC.dII
automatically detect circular references and release the relevant resource values if required.)

For convenience, a resource interface can be conceptualised by the C++ programmer as
containing an internal compound stack object rather than a managed reference — the effect is the
same since a compound stack object contains a resource value via a managed reference. The
exception is a resource interface for an ETAC string which does not contain a managed reference
but the actual string itself (which can be conceptualised as a string stack object). The said
conceptual stack object can be called a “resource object”.

Various operations can be performed on a resource object via its resource interface. For
example, a resource object can be copied and duplicated, and its data can be modified, extracted,
and new data can be inserted, appended, and deleted.

The diagram below illustrates the implementation of the structure of an ETAC interface and
resource interface. A thick black arrow represents a managed reference, and a thin blue arrow
represents a C++ pointer. The C++ program could be an external TAC library (a DLL) or an
application program. The ETAC sequence resource value has two managed references pointing
to it. The resource value is destroyed only when all managed references pointing to it have been
released.

The ETAC and Resource Interfaces

C++ virtual table for C++ virtual table for Obiect stack
resource interface. ETAC interface. JeCt stack.
(

e [Blmararzarem
C++ Program / ETAC Interpreter)

L++ Program

— \\ ETAC sequence
pointer to N stack object.
ETAC interface. —eETAC(] & El ﬁ/)

C++ pointer to

| o
resource interface. SquarD

ETAC internal
functions.

oo
Toll I T

C++ pointer to &
estvard f
Regular C++ (D—— =

~— - J
|

(g retoerce o) (Emacsmmgvae.) (E780 setverce)
In the illustration above, a C++ variable (“ETAC”) points to (an instance of) an ETAC interface,
from which pointers to other resource interfaces (“SeqvVar” and “StrVar”) can be obtained.
Integer (“IntVar”) and decimal variables do not point to a resource interface because they do
not require allocated resources (which are maintained by the ETAC interpreter). String variables
(“Strvar”) point to a resource interface containing its own individual string (which is
maintained by the ETAC interpreter) rather than a managed reference. A variable for a stack

object also points to a resource interface containing its own individual stack object rather than a
managed reference. However, the stack object itself may contain a resource value.

Notice that in the diagram, the resource interface of SeqVar contains a managed reference to the
sequence (resource value) that is also referenced by a stack object (only for illustration). If
SeqVar were copied to another variable, then a new resource interface would be created with a
managed reference pointing to the same sequence. If SeqVar were duplicated to another
variable, then the new resource interface would contain a managed reference to a duplicate of the
sequence. This behaviour is the same as for a stack object under the same circumstances.
Therefore, all resource interfaces act as though they each directly contain the value of a stack
object.

Since the ETAC interface and resource interfaces use the virtual table produced by the C++
compiler, such interfaces may fail to operate if a different C++ compiler produces a virtual table
not compatible with the one with which the ETAC interpreter was compiled. See Appendix A:
Compatibility Issues for more details.

1.2 ETAC Code and External TAC Library Interaction

To call an ETL function from ETAC code, the external TAC library containing the ETL function
must first be loaded, typically via the @ImportLib command or the load lib command for
more refined processing. Those two commands return the capability of calling the ETL functions.

The following diagram illustrates the essentials of the process of importing an external TAC
library and calling an ETL function (Fnt()) within that library. The red numbers indicate the order
of the events. Error checking code, variable allocations, and other irrelevant items are not shown
in the illustration.

Illustration of ETAC Code and ETL Interaction

(ETAC Text Script

(ETAC Interpreter h (" External TAC Library W
L ('DataObj) : = (@ImportLib(...);

1_?_ Custom comop 11 Frt(pTAC)
’(processor)

ETAC interface

Var := (DataObj.doFnt(Arg);

13 9 ! »>(tacGetCCMapping()
8 \§
() a 12
"do" (prefix) load_lib object stack
3 4
(Data Object W l 2
| 6 | { names)
| 6 | EXE:n
6 ordinals
J 5
N J
- J
Legend

—P (Call to function or procedure.
Data transfer to and from destination.
Data transfer to destination.
e -~ Data access by source.
— > C++ pointer to data.

_ Source data used to create destination data.

Source is on the left side.

@ImportLib is called from ETAC code (1).
@ImportLib then calls load lib which obtains a handle to the external TAC library (2).
load 1lib then calls tacGetCCMapping () defined in the external TAC library (3).

-lkfadl\)t—d

tacGetCCMapping () returns a string list of the requested ETL function names and also a
corresponding list of the ordinal numbers of the ETL functions (4). The version number of
the ETAC interface with which the external TAC library was compiled is also returned. An
ETL function name is a string name in the form of a variable identifier that represents the
ETL function. ETL function names are created by the external TAC library designer.

5. load lib returns three corresponding sequences to @ImportLib (6): (1) a sequence of the
requested ETL function names (“names”), (2) a sequence containing EXE comops constructed

from the returned ordinal numbers in such a way that they are not confused with the same
ordinal numbers in a different external TAC library (“EXE:n”) (5), and (3) a sequence of the
returned ordinal numbers (“ordinals”).

@ImportLib creates a data object and privately stores the three sequences in it, but also
creates member variables in the form of ETAC functions (“ETAC function”) (or in a form that
act as operators) from the ETL function names, (1), and the EXE comops, (2). The member
variables will have names (“doFnt”) beginning with the requested prefix passed to
@ImportLib (7). The created data object is also initialised with other data before being
returned (“DataObj”) to the caller of @ImportLib (8).

When the ETAC code activates a member variable in the data object, the embedded EXE
comop gets activated (10) after being passed any required arguments (“Arg”) to the object
stack (9).

The ETAC interpreter obtains the ordinal number from the custom comop number of the EXE
comop to call the corresponding ETL function (“Fnt”), passing a pointer (“pTAC”) to the
appropriate version of the ETAC interface to that ETL function (11).

The ETL function retrieves the member variable’s stack object arguments via the passed
ETAC interface (12), and can push stack objects onto the object stack (via the ETAC
interface) to be returned (“Var”) to the ETAC caller of the member variable (13).

1.3 ETAC Code and Application Program Interaction

To use the ETAC interpreter from an application program, the application program must first load
AppETAC.dII (this is done automatically if the import library AppETAC.lib is linked into the
application program). The application program then calls etacSetAppETAC () to set up the
ETAC interpreter for use. The application program interacts with the ETAC interpreter via the
returned ETAC interface.

The following diagram illustrates the essentials of the process of starting the ETAC interpreter
from within an application program, and setting the call-back function for use by ETAC code.
The red numbers indicate the order of the events. Error checking code, variable allocations, and
other irrelevant items are not shown in the illustration.

INustration of ETAC Code and Application Program Interaction

(Application Program h (AppETAC.dII)
TAC : — (etacSetAppETAC(..., AppFnt, ...);)} ! P etacSetAppETAC.
L 12
~
(TAC—>ccExecETAC(Script);) 3 1y ETAC Interpreter
AppFnt (cCTAC *pTAC)) S 2t e
2
1
(pTAC—>ccPull(Cmd);) ;:]
switch (Cmd) 8 >[]
case .. : 9 object stack
e LY 8 - Custom comop
(pTAC—>ccPull(Arg);) < =\ processor
(pTAC—>ccPush(Result);) L)
case .. : 10 \ J
= y,
@ ETAC Text Script L 4)
.= (run_app_fnt 10 Arg ...;) J/
Rtn := (un_app_fnt 10 Arg ,JG
~ 5

11

=P Call to function or procedure.
Data transfer to destination.
| EEEEELEE -~ Data access by source.

—— C++ pointer to data.

Source is on the left side.

1. The application program calls etacSetAppETAC (), passing a pointer to the (optional) call-
back function (“AppFnt”) (1) which is stored in the ETAC interpreter for later use.

2. etacSetAppETAC () initialises the ETAC interpreter for use (2), returning a pointer to the
ETAC interface.

ccExecETAC () is called with an argument (“Script”) to execute ETAC code (3).
4. The ETAC interpreter activates the requested ETAC code (4).

5. The ETAC code activates run_app_£nt (which is processed by the ETAC interpreter) (6),
optionally pushing a command number (“10”") and corresponding arguments (“Arg”) onto the
object stack (5). The command number is only a convention so that the call-back function
can distinguish among different operations. If a command number is used, run_app_ £nt and
its command number are typically both enclosed in a procedure, and that procedure is
assigned to an ETAC variable to be used as a command (not depicted in this illustration).

6. The ETAC interpreter calls the call-back function (“AppFnt”) with a pointer to the ETAC
interface (“pTAC”) (7).

7. The call-back function pulls the command number (into “Cmd”) off the object stack (8), and
uses it to execute the appropriate code via the switch statement.

8. The appropriate part of the switch statement pulls the rest of the arguments (“Arg”) off the
object stack (9) and performs the desired action (possibly interacting with the ETAC
interpreter via the ETAC interface), optionally pushing the return values (“Result”) onto the
object stack (10).

9. The returned values are assigned to the appropriate ETAC variables (“Rtn”) or processed in
some other way (11).

1.4 C++ Code and External TAC Library Interaction

ETL functions can be called from the main application program, the call-back function in an
application program, or other ETL functions existing in a different external TAC library. Of
course, calling an ETL function existing in the same external TAC library involves only a C++
function call. Calling an ETL function from an application program requires that the ETAC
interpreter has been initialised beforehand, and that the external TAC library has been loaded.

The following diagram illustrates the essentials of the process of C++ code interacting with an
external TAC library. The diagram assumes that the C++ code calling the ETL functions has been
linked to the import library of the external TAC library. Also, AppETAC.dIl is assumed to have
been loaded and initialised if the C++ code exists in an application program. The name of the
ETL function being called in this illustration is “Fnt” existing in an external TAC library called
“MyETL.dI”. Error checking code and other irrelevant items are not shown in the illustration.

Illustration of C++ Code and ETL Interaction

(C++ Code B (" ETAC Interpreter h
extern "C" cc rtn code ccTACAPI Fnt (ccTAC *pTAC); o ——————
L e | — ETAC interface
CCTAC *TAC; / R @
CcTAC *TACIF; b,
HMODULE ModHndl;y H
1
[auiutel pieieiededeindede bbb bebe kbt 1
i ModHndl = ::GetModuleHandle ("MyETL.d11") ; !
1
i |tacIF = (TAC—>ccGetTACIF(ModHndl),) object stack 1
H TAC->ccPush (..) ; grmmnnsaememanasasasnanane ‘.
| Fnt(TACIF) 2 ; - |—}— ETAC interfac
i GAC—>ccPull (..) 7 Y _ J
1
s] T
1
1
1
1
1
1
1
1
)

e |

— (Call to function.
Data transfer to and from destination.
Data transfer to destination.

R - Data access by source.

— C++ pointer to data.

--------- » Reference to destination.

Source is on the left side.

Before C++ code can call ETL functions, a pointer to the ETAC interface (“TAC”) must first
be obtained. That pointer can either be returned via the etacSetAppETAC () function

defined in AppETAC.dIl, or automatically passed as a C++ argument to the C++ function that
will call the ETL functions.

The prototypes of the ETL functions need to be present
(“extern "C" cc rtn code Fnt(ccTAC *pTAC) ;).

A handle (“ModHndI”) to the external TAC library (“MyETL.dII"’) is obtained via
GetModuleHandle () (if the library has already been loaded) or LoadLibrary () (if the
library has not yet been loaded). If LoadLibrary () is called then FreeLibrary () must be
called when the external TAC library is no longer to be accessed.

The ETAC interface (“TACIF”) for the external TAC library is obtained for passing to the E7L
functions in that library (1). ccGetTACIF () internally gets the ETAC interface version
number from tacGetCCMapping () which is defined in the external TAC library.
ccGetTACIF () uses that number to determine the corresponding ETAC interface, which is
returned to the caller. Note that the ETAC interface (“TACIF”) for the external TAC library
may be of a different version than the originally obtained ETAC interface (“TAC”).

Required arguments for the ETL function are pushed onto the object stack (2).

The ETL function (“Fnt”) is called with the appropriate ETAC interface (“TACIF”) (3). The
ETL function receives a pointer to that ETAC interface in the parameter “pTAC”.

The ETL function pulls stack object arguments, and pushes returned stack objects to the
object stack (4).

Any return values from the call to the ETL function are pulled off the object stack (5).

2

Programming Guide

This chapter is intended for C++ programmers who want to create C++ code to interact with the
ETAC interpreter. 1t is assumed that the C++ programmer is familiar with Windows®
programming, and in particular, how to create a Windows® 32-bit DLL (required for creating an
external TAC library). Secondly, it is assumed that the C++ programmer is familiar with the
document entitled “The Official ETAC Programming Language” (ETACProgLang(Official).pdf).

Note that ETAC is released only for the Windows® 32-bit platform (however, ETAC can run on
the Windows® 64-bit platform) beginning with Windows® XP. Also note that ETAC is not multi-
threading and must not be regarded as such if multi-threading is used with an external TAC
library.

2.1 C++ Compiler Requirements

The ETAC interpreter was compiled with MSVC 7.1 (Microsoft® Visual C++® compiler version
7.1). A C++ programmer wanting to write C++ code to interact with the ETAC interpreter needs
to compile their code with a 32-bit C++ compiler compatible with MSVC 7.1 mainly because the
intercommunication between C++ and the ETAC interpreter uses the hidden virtual table of the
virtual member functions of the ETAC interface and resource interfaces (see Appendix A:
Compatibility Issues for more information). In addition, all function calls to and from AppETAC.dII
and external TAC libraries use the native C calling convention known as < cdecl) within
MSVC. A compiler compatible with MSVC 7.1 needs to be able to generate code that is exactly
compatible with the < cdecl> calling convention. At the time of this writing, Microsoft®
provided an MSVC compiler free for use (subject to terms and conditions). The ETAC
interpreter is a 32-bit program that can interact only with 32-bit application programs, DLLs, and
external TAC libraries.

2.2 Creating an External TAC Library

ETAC is distributed with the standard TAC library which is intended to be a minimal library of
commands built into the ETAC interpreter. An external TAC library allows a C++ programmer to
extend the set of comops using C++ code when the desired comops cannot be implemented in
ETAC text script. Such a case arises, for example, when ETAC code is desired to perform more
specialised functionality than is currently available, or when ETAC code is desired to interact
with the operating system.

To create an external TAC library, a C++ programmer needs to create a DLL and implement the
function tacGetCCMapping () which returns required information to the ETAC interpreter. The
C++ programmer also needs to implement the desired ETL functions. The @ImportLib command
(via the load 1ib command) uses the information returned by tacGetCCMapping () to
construct a data object containing function members that call the appropriate ETL functions with
an ETAC interface to the ETAC interpreter. The ETAC interface is an instance of a C++ class
containing only virtual member functions that are implemented in the ETAC interpreter. An ETL
function receives the ETAC interface as the only C++ argument. Other arguments that an ETL
function may need are passed as TAC objects on the object stack, which are retrieved via the
ETAC interface. An ETL function can push returned TAC objects onto the object stack before
completing.

2.2.1 Requirements for Creating an External TAC Library

The following requirements need to be satisfied when creating an external TAC library.

1. A mapping function (tacGetCCMapping ()) needs to be implemented in the external TAC
library. (Ref: 3.13.1_Mapping Function)
2. The function names of the desired ETL functions need to be established. Those names will

be exported by the external TAC library to be called directly from external C++ code if
required. The ETAC interpreter uses only the exported name “tacGetCCMapping”.

3. A unique name satisfying the syntax of a variable identifier needs to be designated for
each ETL function. The name is typically based on the name of the ETL function, and will
be used as a base name for calling the ETL function from ETAC code. A name of an ETL
function for use as an operator must be prefixed with an ampersand character (&).

4. A DLL ordinal number for each ETL function needs to be defined. The ordinal numbers
will typically be in sequential order begin with 2 (ordinal number 1 will typically be the
ordinal number of tacGetCCMapping ()). The ETAC interpreter uses the ordinal numbers
to call the ETL functions.

5. A module-definition file (.def) needs to be created for the external TAC library. The
module-definition file will contain the names of the exported ETL functions along with
their ordinal numbers. The module-definition file should be released along with the
external TAC library if the library is to be release to the public.

6. An import library needs to be created from the module-definition file. The import library
is not used by the ETAC interpreter, but can be linked to other C++ code to directly call
the ETL functions. With MSVC, the import library can be specified to be created
automatically from the module-definition file. The import library should be released along
with the external TAC library if the library is to be release to the public.

7. The inclusion file ExternTACLib_n.h, where n which indicates the version of the ETAC
interface and resource interfaces currently in use, needs to be included once in each source
file of the external TAC library that interacts with the ETAC interpreter. That inclusion
file resides in the path «<...\Victella\AppETAC\Include>. For a new external TAC library, the
inclusion file with the latest version, n, can be used. If pre-processor operational
definitions need to be made, they must be defined before the inclusion of
ExternTACLib_n.h. (Ref: 3.3.8_Operational Definitions)

8. tacGetCCMapping () and the ETL functions are required to use the C programming
language linkage conventions (<extern "C™).

9. The following assertions must not fail:

assert (sizeof (char) == 1);

assert (sizeof (bool) == 1);

assert (sizeof (short) == 2);

assert (sizeof (int) == 4);

assert (sizeof (long) == 4);

assert (sizeof (void *) == 4);

assert (sizeof (double) == 8);

assert (sizeof (ccCHAR) == sizeof (unsigned long));

The following code illustrates the essentials of the structure of an external TAC library. The code
would be compiled into a DLL (ExternTACLib.dll). The function tacGetCCMapping () must be
defined to process the class list and return the current version of the ETAC interface.
pReservedl, pReserved?, and pReserved3 are ignored. In this illustration, there are three
ETL functions: Command1(), Command2(), and Operator(). The three ETL functions correspond,
respectively, with the programmer-defined comop names “command_1”, “command_2", and
“operator”, and with the ETL function ordinal numbers 2, 3, and 4, respectively. Note that the last
ETL function is to be used as an operator, which is indicated by the ampersand (&) prefixed to the

comop name (“&operator”). The tacGetCCMapping () function recognises three programmer-

Programming Guide 2.2 Creating an External TAC Library 11

defined classes: “Command1”, “Class1”, and “Class2”. Any of those class names are specified by
the caller via @ImportLib or load lib. The class names determine which ETL functions are
recognised by the ETAC interpreter. “command_1" indicates Command1(), “Class1” indicates
Command2() and Operator(), and “Class2” indicates Command1() and Operator().

continued on next page ...

if (pClasses == NULL || pClasses[©@] == NULL)

{
/* All ETL functions requested. */
pComopNameList = CNamelst;
pComopOrdList = COrdLst;
}
else
{
/* Construct the name and ordinal lists corresponding to the specified classes. */
LstIdx = @;
for (Idx = 0; pClasses[Idx] != NULL; Idx++)
{
if (wcscmp(pClasses[Idx],) ==)
{

OutNameLst[LstIdx] = CNameLst[2];
OutOrdLst[LstIdx] = COrdLst[@];

LstIdx++;

¥

else

if (wcscmp(pClasses[Idx],) ==)
OutNameLst[LstIdx] = CNamelLst[1];
OutOrdLst[LstIdx] = COrdLst[1];
LstIdx++;
OutNameLst[LstIdx] = CNamelLst[2];
OutOrdLst[LstIdx] = COrdLst[2];
LstIdx++;

}

else

if (wcscmp(pClasses[Idx],) == 0)

{
OutNameLst[LstIdx] = CNamelLst[©];
OutOrdLst[LstIdx] = COrdLst[@];
LstIdx++;
OutNameLst[LstIdx] = CNameLst[2];
OutOrdLst[LstIdx] = COrdLst[2];
LstIdx++;

¥

}

/* Pass the name and ordinal lists back to the caller. */
OutNameLst[LstIdx] = NULL;

OutOrdLst[LstIdx] = @;

pComopNameList = OutNamelLst;

pComopOrdList = OutOrdLst;

}

return (ccTAC_VRSN); // Returns version number.

}

cc_rtn_code ccTACAPI Commandl(ccTAC *pTAC)
{

}

cc_rtn_code ccTACAPI Command2(ccTAC *pTAC)
{

}

cc_rtn_code ccTACAPI Operator(ccTAC *pTAC)
{

}
} e

The code above would be compiled with the module-definition file as shown below. An import
library should automatically be created by the compiler. The external TAC library
(ExternTACLib.dIl), module-definition file (ExternTACLib.def), and the import library
(ExternTACLib.lib) should be distributed together if the external TAC library is to be publicly
released.

LIBRARY "ExternTACLib"
EXPORTS
tacGetCCMapping @1 PRIVATE
Commandl @2
Command2 @3
Operator @4

It is important that the ordinal numbers specified in the module-definition file correspond with
the comop names and ordinal numbers specified in tacGetCCMapping ().

2.3 Creating an Application Program to Use ETAC

The ETAC interpreter can be integrated with a C++ application program or DLL (dynamic linked
library) via the AppETAC.dIl implementation of the ETAC interpreter. A call-back function can be
implemented in the application program allowing ETAC code to execute code in that application
program. The ETAC interpreter can also be indirectly integrated with a program written in any
other programming language, such as Visual Basic, that can load DLLs. This can be achieved by
creating such a DLL and incorporating the ETAC interpreter within it. Thus the said DLL would
be the interface between the said program and the ETAC interpreter.

To incorporate the ETAC interpreter into an application program or DLL, a C++ programmer
needs to load AppETAC.dIl and call the DLL function etacSetAppETAC () which returns an ETAC
interface. etacSetAppETAC () is passed a single optional call-back function (defined in the
application program) which is called by the run_app fnt command within ETAC code. The
call-back function receives the ETAC interface as the only C++ argument. Other arguments that
the call-back function may need are passed by the caller as TAC objects on the object stack,
which are retrieved via the ETAC interface. The call-back function can push returned 74AC
objects onto the object stack before completing. The first TAC object argument received by the
call-back function typically contains an integer that determines the action of that call-back
function. The call-back function can therefore call different C++ functions (with the ETAC
interface as an argument) based on the value of that integer to perform various activities.

2.3.1 Preliminaries for an Application Program to Use ETAC

To execute ETAC code from an application program, AppETAC.dIl requires the location of the file
containing the /oader script and the directories containing the ETAC inclusion files. However,
inclusion files are not required for executing ETAC code files containing TAC binary instructions.

The loader script file (RUnETAC.btac) is the same as the one used with the Run ETAC Scripts
program. The initialisation function (etacSetAppETAC ()) within AppETAC.dIl searches for the
loader script file in the following order.

1. The directory of the application program.

2. The current directory.

3. The directory specified at «<LoadDir=) in the initialisation file (RunETAC.ini) used with the
Run ETAC Scripts program.

4. Prompts the user to enter the loader script file. If the user cancels the prompt, then a
loader script is not used.

The initialisation function also obtains the file path of the text file containing the list of actual
inclusion directories used for relative inclusion paths within ETAC script. Only the first file path
specified is used, as follows.

1. The file path specified in the aeInclDirs parameter of the start-up parameter structure
(aeRppETACPars) passed to the initialisation function.

2. The file specified at «<IncDirs=> in the initialisation file (RUnETAC.ini) used with the Run
ETAC Scripts program.

Note that aeInclDirs and «IncDirs=) specify the file path of the file containing the inclusion
directory paths, not the inclusion directory paths themselves. If the said file path is not specified,
then the current directory is used as the directory for the inclusion files themselves.

The initialisation file (RUnETAC.ini) is searched for in the following order.

1. The directory of the application program.
2. The system Windows directory.

If Run ETAC Scripts has not been installed, and the application programmer does not want to use
the initialisation file (RunETAC.ini), then the loader script (RUnETAC.btac) can be placed in the
directory of the application program, and the file path of the file containing the list of inclusion
files can be specified in the aeInclDirs parameter of the start-up parameter structure
(aeAppETACPars).

(Ref: 3.14.1_Initialisation Function)

2.3.2 Requirements for Incorporating ETAC into an Application Program

The following requirements need to be satisfied when incorporating the ETAC interpreter into an
application program or DLL.

1. A single call-back function needs to be created if required. The ETAC interpreter calls
that call-back function directly through a pointer provided via the initialisation function.
(Ref: 3.15.1_Call-back Function)

2. The inclusion file AppETAC_n.h, where n which indicates the version of the ETAC
interface and resource interfaces currently in use, needs to be included once in each source
file of the application program that interacts with the ETAC interpreter. That inclusion file
resides in the path «..\Victella\AppETAC\Include)>. For a new application program, the
inclusion file with the latest version, n, can (and should) be used. If pre-processor
operational definitions need to be made, they must be defined before the inclusion of
AppETAC_n.h. AppETAC_n.h automatically includes ExternTACLib_n.h and
aeAppETACPars_v.h, where v is the version of the start-up parameter structure
(aeRppETACPars). (Ref: 3.3.8 Operational Definitions)

3. The initialisation function (etacSetAppETAC ()) must be called before any interaction
with the ETAC interpreter can be made. The initialisation function, declared in the
AppETAC_n.h file, is required to use the C programming language linkage conventions
(<extern "C™). (Ref: 3.14.1_Initialisation Function)

4. The application program can be linked with AppETAC.lib (the import library for
AppETAC.dII).

5. All strings used with a resource interface must be well-formed Unicode strings.

6. The following assertions must not fail:

assert (sizeof (char) == 1);
assert (sizeof (bool) == 1);
assert (sizeof (short) == 2);
assert (sizeof (int) == 4);

assert (sizeof (long) == 4);

assert (sizeof (void *) == 4);
assert (sizeof (double) == 8);
assert (sizeof (ccCHAR) == sizeof (unsigned long));

When loading AppETAC.dIl directly, the application programmer can use either a full path to the
DLL or let Windows® try to find it. If AppETAC.dIl is loaded via AppETAC.lib, a path for the DLL
cannot be specified, therefore Windows® will need to find it. The standard Windows" search
order for finding DLLs will be used. That search order (for Windows® XP) is:

1. The directory from which the application was loaded.
The current directory.
The system directory.
The 16-bit system directory.
The Windows directory.

A

The directories that are listed in the PATH environment variable.

In addition, a programmer familiar with the system registry can use the registry key
“HKLM\Software\Microsoft\Windows\CurrentVersion\App Paths\appfile.exe” (for
Windows®™ XP) with a value name of “Path” and value data being the full path of AppETAC.dIl. By
default, AppETAC.dIl exists in the directory “...\Victella\AppETAC”. Windows® will automatically
use the path specified in the said registry key to locate the DLL.

Note that AppETAC.dII is a 32-bit program and is compatible only with 32-bit application programs.
32-bit application programs can run on 64-bit platforms.

The following code illustrates the essentials of the structure of an application program (or a DLL
if appropriate modifications are made). The call-back function (CallbackFnt()) is optional. The
initialisation function (etacSetAppETAC ()) must be called before any interaction with the ETAC
interpreter can occur via the returned ETAC interface (TAC). In this illustration, the ETAC
interpreter is set to operate in debug (aeDEBUG) and silent (aeSILENT) mode. A log file is
specified for error messages (MainAppLog.log). Two ETAC code files (ETACScript1.etac and
ETACScript2.btac) are executed before etacSetAppETAC () returns. Finally, the application
program interacts with the ETAC interpreter before the program’s main message loop is executed.
Note that etacRelease () needs to be called before the main window is destroyed, otherwise the
ETAC interpreter may not be fully released.

#include

/* Define the ETAC interface variable. */
#tdefine ccETAC_REF TAC

#include

/* Declare the call-back function. */
cc_rtn_code ccTACAPI MyCallbackFnt(ccTAC *pTAC);

int WinMain(...)

{

ccRTNCODE; /* Declare the return code variable. */

aeAppETACPars Pars;

ccTAC *TAC;

CcNEW_STRING (ArgStr); /* Stack argument for ScriptTest.etac. */
aeSTR Scripts[2];

int Rtnval = 0;

/* Type size assertions. */

assert(sizeof(char) == 1);
assert(sizeof(bool) == 1);

assert(sizeof(short) == 2);
assert(sizeof(int) == 4);

assert(sizeof(long) == 4);

assert(sizeof(void *) == 4);
assert(sizeof(double) == 2);
assert(sizeof(ccCHAR) == sizeof(unsigned long));

/* Set required parameters. */
Pars.aeFlags |= aeDEBUG | aeSILENT; // Optional startup flags.

Pars.aelLogFilePath = 5 // Optional log file.
Scripts[@] = ; // Optional ETAC code file.
Scripts[1] = 5 // Optional ETAC code file.

Scripts[2] = NULL; // List must be NULL terminated.
Pars.aeScripts = Scripts;

/* Call the initialisation function. */
TAC = ::etacSetAppETAC(ccTAC_VRSN, MyCallbackFnt, &Pars);

if (TAC != NULL)

{
/* The following is just for demonstration. */
ccPUSH((2L));
ccPUSH(());
ccPUSH(());
CCCALLTAC(ccExecCmd ());
TAC->ccPop();

/* The following is just for demonstration. */
ArgStr->strAssign()
ccPUSH((ArgStr));

CCCALLTAC(ccExecETAC());

/* Main message loop. */

}

CCEXITLBL:
if (ccERROR)

{
}

: :etacProcessTACError (ccRTNCDE_VAR);

/* Release resource interfaces. */
CcCFREE (ArgStr);

/* This also needs to be called just before the main window is destroyed. */
::etacRelease();

return (RtnVal);
¥

/* Redefine the ETAC interface variable. */
#undef ccETAC_REF
#tdefine ccETAC_REF pTAC

/* Define the call-back function. */
cc_rtn_code ccTACAPI MyCallbackFnt(ccTAC *pTAC)

{
}‘...

The illustration above demonstrates the following items: ccCALLTAC, ccERROR, ccETAC REF
(Operational Definitions), ccExecCmd, ccExecETAC, ccEXITLBL (Operational Definitions),
ccFREE, ccNEW_STRING, ccPUSH, ccRTNCDE VAR (Operational Definitions), ccRTNCODE,
ccPop, etacSetAppETAC, strAssign.

2.4 Interacting with the ETAC Interpreter

Whether creating an application program or an external TAC library, the same method is used for
interacting with the ETAC interpreter. There are two ways that C++ code can interact with the
ETAC interpreter. The first, preferred, method is to use pre-processor macro definitions. Using
the said macros removes the need to create extraneous coding, thus simplifying the interaction
with the ETAC interpreter. The second method is not to use the macros but to produce full
explicit code that interacts with the ETAC interpreter. (Ref: 3.4_Macro Definitions)

The most common interaction with the ETAC interpreter is to access and modify TAC objects. A
resource interface is required for each non-numerical 74AC object to be modified. To use a
resource interface, the C++ programmer defines a NULL pointer to the required resource interface
which is initialised by appropriate member functions of the ETAC interface or member functions
of some other already initialised resource interface. A resource interface must be explicitly
released by the C++ programmer when it is no longer to be used, otherwise the internal memory
for that interface will not be released until AppETAC.dII is unloaded.

In this section, the macro method mentioned above will be used in the illustrations. To use the
explicit method, a C++ programmer can inspect the body of the macro definitions.

The following code illustrates an ETL function (MyETLFnt) which receives a string argument on
the object stack, displays the string to the console prefixed with a number, and waits for the user
to type in a response. The string response is pushed onto the object stack as the returned value
for the ETL function caller. For example, if the string argument is “what's up?”, the ETL function
displays “1 what's up? :>” on the console and waits for the user to type a response (followed by
hitting the ENTER key). If the user response is “Nothing” then the returned string on the object
stack would be “Response: Nothing”. If the string argument on the next call of the ETL function is
“Why Nothing?”, then the E7TL function displays “2 Why Nothing :>”, and the user’s response is
returned to the caller. Note that the string response is constructed in a memory block for
illustration purposes only; a string variable could have been used to achieve the same result.

#include

#include

extern cc_rtn_code ccTACAPI MyETLFnt(ccTAC *pTAC)

{

ccRTNCODE; /* Declare the return code variable. */

CCcSTRING (ArgStr); /* Stack argument for library function. */
CcSTRING (RtnStr); /* String value to return to caller. */
ccNEW_STRING (NewStr);

ccNEW_MEMORY (StrMem) ;

wchar_t StrBuff[22];

static int Num = 9;

assert(sizeof(wchar_t) == ccSTR_CHAR_SZ)

/* Pull the string argument off the object stack. */
ccPULL((ArgStr));

/* Construct the next number and prefix it to the string argument. */
(void)_itow(++Num, StrBuff,)8

NewStr->strAssign(StrBuff);

NewStr->strAppend();

NewStr->strAppend(ArgStr);

NewStr->strAppend()

/* Display the new string to the console and wait for a response. */
ccPUSH((NewStr));
CcCCALLTAC(ccExecCmd ());

/* Get the response off the object stack. */
ccPULL((ArgStr)); // ArgStr can be used again.

/* Construct the string in a memory block to return on the object stack. */
(void)StrMem->mbSetDataSize(9); // Not needed in this case (data size is already 0).

StrMem->mbImport ()
StrMem->mbImport (ArgStr);
StrMem- >mbImport ()

/* Transfer the string in the memory block to a string resource. */
StrMem->mbExport (RtnStr);

/* Return the response string on the object stack for the caller. */
ccPUSH((RtnStr));

CCEXITLBL:
/* Release resource interfaces. */
ccFREE(StrMem);
CcCFREE (NewStr);
CCFREE(RtnStr);
cCcFREE(ArgStr);

return (ccRTNCDE_VAR);
} e

The illustration above demonstrates the following items: ccCALLTAC, ccEXITLBL (Operational
Definitions), ccFREE, ccNEW_MEMORY, ccNEW_STRING, ccPULL, ccPUSH, ccRTNCDE VAR
(Operational Definitions), ccRTNCODE, ccSTRING, mbExport, mblmport, strAppend, strAssign.

The following code illustrates an E7TL function (OperETLFnt) to be called from ETAC code as an
operator. The ETL function appends two or more string arguments on the object stack, returning
the concatenated string.

#include

extern cc_rtn_code ccTACAPI OperETLFnt(ccTAC *pTAC)

{

CccRTNCODE; /* Declare the return code variable. */

CcSTRING (ArgStr); /* Stack argument for library function. */
ccNEW_STRING (RtnStr); /* String value to return to caller. */
ccNEW_SEQUENCE (ErrSeq); /* Sequence for error message. */

ccULONG NumArgs ;

unsigned long Idx;

/* Determine the number of string arguments on the object stack. */
NumArgs = pTAC->ccCountToMark();

if (NumArgs >=)
{
/* Correct number of arguments - proceed. */
for (Idx = @; Idx < NumArgs; Idx++)
{
/* Pull the next string argument off the object stack and append it to the
previous one. */
ccPULL((ArgStr));
RtnStr->strAppend(ArgStr);

}

/* Pop the mark @ stack object off the object stack. */
pTAC->ccPop();

/* Return the concatenated string on the object stack for the caller. */
cCcPUSH((RtnStr));

}

else

/* Incorrect number of arguments. */
/* Pop the arguments and mark @ off the object stack. */
pTAC->ccPop(NumArgs + 1); // 1 is for the mark @ stack object.

/* Return a programmer-defined error. */

(void)ErrSeq->sPut(); // Ignore boolean return value.
ccPUSH((ErrSeq)); // Push the programmer-defined error message.

ccPUSH((16L)); // Push the programmer-defined error number 10.

CCSET_LIBERR; // Indicates programmer-defined error for the ETAC interpreter.

}

CCEXITLBL:
/* Release resource interfaces. */
ccFREE(ErrSeq);
CCFREE(RtnStr);
CcCcFREE(ArgStr);

return (ccRTNCDE_VAR);
} e

The illustration above demonstrates the following items: ccEXITLBL (Operational Definitions),
ccFREE, ccNEW_SEQUENCE, ccNEW_STRING, ccPULL, ¢ccPUSH, ¢c¢cSET_LIBERR,
ccRTNCDE VAR (Operational Definitions), ccRTNCODE, ccSTRING, ccCountToMark, ccPop,

sPut, strAppend.

The following code illustrates a call-back function (CallbackFnt) that performs various operations.
The code uses a command number (CmdNum) pulled from the object stack to determine which
operation to perform. However, such a method of determining which operation to perform is
decided by the programmer — a different method can be used if desired.

#include

extern cc_rtn_code ccTACAPI CallbackFnt(ccTAC *pTAC)

{

CccRTNCODE; /* Declare the return code variable. */

CCcINT CmdNum; /* Command number to perform various activities. */

. /* Other declarations. */

ccPULL ((CmdNum)) ;
switch (CmdNum)
{
case : /* Operation 1. */
/* Code. */
CCRTNCDE_VAR = Fntl(pTAC); // Fntl() is an example.
break;
case : /* Operation 2. */
/* Code. */
break;
default:
/* Return a programmer-defined error. */
(void)ErrSeq->sPut()

ccPUSH((ErrSeq)); // Push the programmer-defined error message.
ccPUSH((5L)); // Push the programmer-defined error number 5.
CCSET_LIBERR; // Indicates programmer-defined error for the ETAC interpreter.

CCEXITLBL:
/* Release resource interfaces. */

return (ccRTNCDE_VAR);
} e

The illustration above demonstrates the following items: ccEXITLBL (Operational Definitions),
ccPULL, ccPUSH, ccSET LIBERR, ccRTNCDE VAR (Operational Definitions), ccRTNCODE,
sPut.

2.5 Calling ETL Functions from C++

An ETL function can be called directly from C++ code wherever a pointer to the ETAC interface
is available. The general procedure to call an ETL function from C++ code is as follows. The
procedure applies to each external TAC library.

1. Load the external TAC library, either explicitly or via the corresponding import library. In
either case, a handle to the external TAC library (a DLL) is obtained.

2. Call TAC->ccGetTACIF () with the external TAC library handle (from step (1)) to obtain
a pointer to the ETAC interface for the ETL functions within that external TAC library.
TAC is a pointer to the existing ETAC interface. Note that the obtained ETAC interface for
the external TAC library may be of a different version than the existing ETAC interface
(“TAC”).

3. Call the desired ETL functions with the ETAC interface obtained from step (2).

The following code illustrates how to call an ETL function, StringTest(), from C++ code. The
example assumes that the C++ code has been linked with the import library of the external TAC
library (ExternTACLib.dll). The example also assumes that pTAC already points to an existing
ETAC interface. StringTest() takes a string stack object from the object stack, converts it to a
different string, and returns the converted string onto the object stack. Error checking code and
other irrelevant items are not shown in the illustration.

#include /* or AppETAC_1.h if appropriate. */

extern cc_rtn_code ccTACAPI StringTest(ccTAC *TACIF); /* Declare library function. */
cc_rtn_code Function(ccTAC *pTAC) /* Some function. */

{

ccRTNCODE; /* Declare the return code variable. */

ccTAC *TACIF; /* ETAC interface for all the ETL functions. */

HMODULE ModHnd1;

ccNEW_STRING (ArgStr); /* Stack argument for StringTest(). */

CCcSTRING (RtnStr); /* Returned value from StringTest(). */

/* Get library handle (needs only be done once for the same external TAC library). */
ModHndl = ::GetModuleHandle()

/* Get the ETAC interface for all the ETL functions (needs only be done once for the
same external TAC library). */
TACIF = pTAC->ccGetTACIF(ModHndl);

/* Call the ETL function after pushing the required argument onto the object stack. */
ArgStr->strAssign()

ccPUSH((ArgStr)); /* OR: ccPUSH((L"I am all string.")). */

CCCALL (StringTest(TACIF)); /* Use TACIF to call the StringTest() ETL function. */
ccPULL((RtnStr)); /* Get the value returned by StringTest() from the object stack. */

/* Do something nice here. */

Programming Guide 2.5 Calling ETL Functions from C+ + 21

3

Programming Reference

This chapter contains a reference to the C++ functions required for communication between the
ETAC interpreter and C++ code. The chapter is intended for programmers who are familiar with
the ETAC programming language and the C++ programming language.

3.1 The ETAC Interface

The ETAC interface is the means by which C++ code communicates with the ETAC interpreter,
whether the C++ code exists in an application program or in an external TAC library. The ETAC
interface is implemented as an instance of a C++ class named ccTAC which is obtained from, and
owned by, the ETAC interpreter. Resource interfaces represent the values of TAC objects, and
are obtained from the ETAC interface and other resource interfaces, and owned by the ETAC
interpreter.

3.2 Resource Interfaces

A resource interface internally contains the resource value of a compound stack object. That
resource value is accessed by the C++ programmer by member functions of the resource
interface. The resource value itself is maintained by the ETAC interpreter, and not directly
accessible by the C++ programmer (except where noted). The value of a TAC object with an
embedded value does not use a resource interface. Instead, the value of such a TAC object
(decimal and integer based TAC objects) exists directly in a C++ variable.

An instance of a resource interface is accessed via a C++ variable containing a pointer to the
resource interface. The variable must initially be initialised with NULL before the resource
interface is used. A resource interface must be released when no longer used. Once a resource
interface is released, all existing pointers to it will no longer be valid. A resource interface can
be created via a ccNEW_* () macro (where * represents the kind of resource interface to be
created), and released by the ccFREE () macro.

If an output variable referenced by a member function contains a NULL pointer to a resource

interface, then a new resource interface will be allocated to that variable, otherwise the existing
resource interface pointed to by that variable will automatically be released and a new one will
be allocated.

All strings used with a resource interface must be well-formed Unicode strings (unpaired
surrogate code points are not supported), otherwise failures will occur.

3.3 Pre-processor Definitions

There are several pre-processor definitions used with the ETAC interface and resource interfaces
as described in the following sections. The pre-processor definitions exist in the file
ExternTACLib_n.h, where n is the version number of the ETAC interface and resource interfaces in
use. The following sections lists the pre-processor names and their meaning.

3.3.1 TAC Object Types

The following are the pre-processor names for the 7AC object types.

TAC Object Types

Name Meaning

ccTAC INT Integer (—2,147,483,648 to 2,147,483,647).

ccTAC DEC Decimal (£2.2250738585072014 x 107" to £1.7976931348623158 x 10°* or
ZEer0).

ccTAC STR Unicode® string.

ccTAC SEQ Sequence.

ccTAC PROC Procedure.

ccTAC CMD Named command.

ccTAC CMDL Linked command.

ccTAC_ CMDI Intrinsic command.

ccTAC OPR Named operator.

ccTAC_OPRL Linked operator.

ccTAC OPRI Intrinsic operator.

ccTAC DICT Dictionary.

ccTAC MARK Mark (0 to 7).

ccTAC MEM Memory.

CCTAC_NULL Null.

ccTAC_EXE Executable.

3.3.2 Intrinsic Command Codes

The following are the pre-processor names for the intrinsic commands.

Name

ccTAC I START SEQ
ccTAC I END SEQ
ccTAC I START PROC
ccTAC I END PROC
CcTAC I START OP
ccTAC I END OP

ccTAC I ASN DICT ITEM
ccTAC I NEW DICT ITEM
ccTAC_I NEW DICT
ccTAC I NEG
ccTAC I POP
CcTAC I SWAP
ccTAC I DUP TOP
ccTAC I COPY TOP
ccTAC I COPY

Intrinsic Command Codes

Meaning
Start sequence expression construction ([).

End sequence expression construction (]).
Start procedure expression construction ({).
End procedure expression construction (}).
Start operator expression ()).

End operator expression (().

Assign dictionary item (:=).

New dictionary item (:-).

New dictionary.

Negate number.

Pop off TAC stack.

Swap first two stack objects.

Duplicate topmost stack object.

Copy topmost stack object.

Copy stack objects from top of TAC stack.

ccTAC I COPY ANY
ccTAC I COPY REL
ccTAC I ROLL
ccTAC I COUNT
ccTAC I CLEAR

cCTAC_I CNT TO MARK

CCTAC I GET TYPE
ccTAC I CUSTOM
ccTAC I ASK STACK
ccTAC I SET STACK
ccTAC I EXEC
ccTAC I IF THEN
ccTAC I SWITCH
ccTAC_I DO _FOR
ccTAC_I DO REPEAT
ccTAC I DO _LOOPS
ccTAC I DO WITH
ccTAC I DO WHILE
ccTAC I DO UNTIL
ccTAC I BREAK
ccTAC I GO _END
ccTAC I END
ccTAC I NOT

Copy any stack object.
Copy relative stack object.
Roll stack objects.
Count stack objects.
Remove stack objects.
Count to mark.

Get stack object type.
Execute custom comop.
Determine current 74C stack.
Set current TAC stack.
Execute stack object.
‘If then’ construct.
‘Switch’ construct.

‘Do for’ iteration.

‘Do repeat’ iteration.
‘Do loops’ iteration.
‘Do with’ iteration.

‘Do while’ iteration.
‘Do until’ iteration.
Break from procedure.
Go to end of procedure.
End ETAC session.

Binary inversion of integer.

ccTAC I GET Get sequence or procedure element.

ccTAC I PUT Put sequence or procedure element.

ccTAC I SIZE Get size of compound stack object.

ccTAC I TRUNC Truncate decimal, integer, or string.
ccTAC I SET CUR ACT Set current action of stack object.

ccTAC I GET CUR ACT Get current action of stack object.

3.3.3 Intrinsic Operator Codes
The following are the pre-processor names for the intrinsic operators.

Intrinsic Operator Codes

Name Meaning

ccTAC_I_ADD Add (+).

ccTAC I SUB Subtract (-).

ccTAC I DIV Divide (/).

ccTAC I MULT Multiply (*).

CCTAC I POWER Power ().

ccTAC I EQUAL Equal (=).

ccTAC I N EQUAL Not equal (!=).

ccTAC I LESS Less than (<).

ccTAC I GREAT Greater than (>).

ccTAC I LESS EQ Less than or equal (<=).
ccTAC I GREAT EQ Greater than or equal (>=).
ccTAC I AND Binary ‘AND’.

ccTAC I OR Binary ‘OR’.

ccTAC I COMBINE Combine sequences or procedures (++).

3.3.4 TAC Object Actions

The following are the pre-processor names of stack object actions for ccTAC I SET CUR ACT
and ccTAC I GET CUR ACT.

TAC Object Actions

Name Meaning

ccSO_NOM ACT Set nominal action for stack object.

ccSO _EXEC INT Execute internal process.

ccSO_EXEC DICT Execute stack object found in dictionary.
ccSO_EXEC MEMBS Execute members of procedure.
ccSO_PUSH ON STACK Push stack object onto the object stack.
ccSO_PUSH ON OSTACK Push stack object onto the operator stack.
ccSO PUSH ON DSTACK Push stack object onto the dictionary stack.

3.3.5 TAC Object Indicators

The following are the pre-processor names of 74C stack indicators for ccTAC I ASK STACK and
CCTAC I SET STACK.

TAC Stack Indicators

Name Meaning
ccOBJ STACK Object stack.
ccOPR_STACK Operator stack.

ccDICT STACK Dictionary stack.

3.3.6 Logical Boolean Values

The following are the pre-processor names of the logical boolean values for stack objects of type
ccTAC INT.

Boolean Values

Name Meaning
ccTAC_TRUE ‘true’ value.
ccTAC FALSE ‘false’ value.

3.3.7 Dictionary Binary Flags

The following are the pre-processor names of the binary flags associated with a dictionary
resource value.

Dictionary Binary Flags

Name Meaning
ccD LINKAGES The dictionary resource value has at least one /ink into it.

3.3.8 Operational Definitions

The following pre-processor names are re-definable by the C++ programmer (unless stated
otherwise). Redefinitions must be made before the inclusion of ExternTACLib_n.h or
AppETAC_n.h.

Operational Definitions

Name Meaning
ccETAC REF The variable name used for the pointer (ccTAC *) to the ETAC interface

(default: pTAC).

ccRTNCDE VAR The variable name used for the return code (cc_rtn code) for the ETAC
interface and resource interface member functions (default: ccRtnCode).

CCEXITLBL The name of the C++ label used for releasing resource interfaces and other
actions when an ETAC interface or resource interface member function
returns a non-success return code (default: ccExit).

ccTACAPI The low-level function calling convention used for communication with all
functions defined in an external TAC library or the call-back function in an
application program. The value must be exactly equivalent to cdecl as
defined for the Microsoft® Visual C++* compiler (default: cdecl).

CccVFI The low-level function calling convention used for communication with the
ETAC interpreter defined in the member functions of the ETAC interface
and resource interfaces. The value must be exactly equivalent to cdecl
as defined for the Microsoft® Visual C++® compiler (default: cdecl).

ccTAC VRSN Specifies the version of the ETAC interface and the resource interfaces in
use. The value of this definition must not be modified.

The first three definitions are used by some of the ‘cc’ macros.

3.3.9 Data Form Indicators
The following names are defined for the data forms of a memory stack object.

Data Form Indicators

Symbol Meaning

ccMO BIN Non-text data or data regarded as binary (default).

ccMO TXT Standard (8-bit) character width text data (Windows-1252).

ccMO U8 UTF-8 text data.

ccMO Ulé LE UTF-16 text data (little-endian).

ccMO Ul6 BE UTF-16 text data (big-endian).

ccMO _U32 LE UTF-32 text data (little-endian).

ccMO U32 BE UTF-32 text data (big-endian).

ccMO NATIVE Native data form for Unicode® strings on the Windows® operating

system (same as ccMO Ul6 LE).

Note that the UTF formats must be well-formed code unit sequences, otherwise an error may
occur or the consequence is unpredictable. When verifying memory data for conformance with
UTF-16 or UTF-32, ETAC regards UTF null terminator characters (U+0000) as being invalid.

3.4 Macro Definitions

There are several pre-processor macro definitions used with the ETAC interface and resource
interfaces as described in the following sections. The pre-processor definitions exist in the file
ExternTACLib_n.h, where n is the version number of the ETAC interface and resource interfaces in
use.

3.4.1 Macro Summary
The following list is a summary of the pre-processor macro definitions.

Pre-processor Macro Summary

Function Description

ccCALL Calls an ETAC interface or a resource interface member function that
returns a return code.

ccCALLTAC Calls an ETAC interface member function that returns a return code.

ccDATAOBJECT Defines and initialises a variable to later hold a pointer to a data
object resource interface.

ccDICTIONARY Defines and initialises a variable to later hold a pointer to a
dictionary resource interface.

ccERROR Evaluates to true if the return code variable indicates an error.

ccFREE Releases a resource interface allocated to a variable.

CccMEMORY Defines and initialises a variable to later hold a pointer to a memory

resource interface.

CccNEW Allocates a new empty resource interface to a variable.

ccNEW_DATAOBJECT Defines and allocates a variable containing a new empty data object
resource interface.

ccNEW_DICTIONARY Defines and allocates a variable containing a new empty dictionary
resource interface.

CcNEW_MEMORY

CcNEW_SEQUENCE

CcNEW_STACKOBJ

ccNEW_STRING

ccPULL

ccPUSH

ccRTNCODE
ccSEQUENCE

ccSET_LIBERR

ccSPCHAR

ccSTACKOBJ

ccSTRING

ccSUCCESS

Defines and allocates a variable containing a new empty memory
resource interface.

Defines and allocates a variable containing a new empty sequence
resource interface.

Defines and allocates a variable containing a new null stack object
resource interface.

Defines and allocates a variable containing a new empty string
resource interface.

Obtains a specified item from the top of the object stack or dictionary
stack, removing that item.

Pushes a stack object containing a specified item to the top of the
object stack or dictionary stack.

Defines and initialises the return code variable.

Defines and initialises a variable to later hold a pointer to a sequence
resource interface.

Assigns the programmer initiated external TAC library error return
code to the return code variable.

Converts a supplementary plane character to the corresponding
Unicode® code point.

Defines and initialises a variable to later hold a pointer to a stack
object resource interface.

Defines and initialises a variable to later hold a pointer to a string
resource interface.

Evaluates to true if the return code variable indicates success.

3.4.2 Return Code Macros

The following pre-processor definitions involve return codes from the ETAC interface and
resource interface member functions.

ccERROR

ccERROR

Dependency
CCRTNCDE_VAR.

Action

Evaluates to true if the return code variable (defined by ccRTNCDE VAR) indicates an error.

Example

ccRTNCODE; /* Declare the return code variable. */

CCCALLTAC(ccExecCmd()); /* Could cause an error. */
CCEXITLBL:

if (ccERROR) /* Detect and process error. */

{

: :etacProcessTACError (ccRTNCDE_VAR);
}

Additional Information

Operational Definitions (ccRTNCDE VAR)

ccSUCCESS

ccSUCCESS

Dependency
CCRTNCDE_VAR.

Action
Evaluates to true if the return code variable (defined by ccRTNCDE VAR) indicates success.

Example
CCcRTNCODE; /* Declare the return code variable. */

CCRTNCDE_VAR = ccETAC_REF->ccExecCmd(); /* Could cause an error. */

if (ccSUCCESS) /* Uses ccRTNCDE_VAR. */

{
/* Do something nice. */
}
else
{
/* Process error. */
: :etacProcessTACError (ccRTNCDE_VAR);
}

Additional Information

Operational Definitions (ccRTNCDE VAR)

ccRTNCODE

ccRTNCODE

Dependency
ccRTNCDE VAR.

Action
Defines and initialises the return code variable (defined by ccRTNCDE_VAR).

Example
CCRTNCODE; /* Declare and initialise the return code variable with ccTAC_RTN_SUCCESS. */

. /* Rest of code. */

Additional Information
Operational Definitions (ccRTNCDE VAR)

CCcSET_LIBERR

CccSET_ LIBERR

Dependencies
CCRTNCDE_VAR.

Action

Assigns the programmer initiated external TAC library error return code (ccETP._RTN LIBERR)
to the return code variable (defined by ccRTNCDE VAR). If an ETL function or the call-back
function returns ccETP_RTN LIBERR to the ETAC interpreter (by use of this macro or not), then
before returning, the topmost stack object on the object stack must be an integer stack object
containing a programmer-defined error number, followed by a sequence. The first element of the
sequence can be a string that is automatically displayed for the default @QOnLibErr and
@OnAppErr ETAC functions. The sequence can be empty, or contain any required elements for
custom redefinitions of @QOnLibErr or QOnAppErr.

Example
/* Return a programmer-defined error. */
(void)ErrSeq->sPut()

ccPUSH((ErrSeq)); // Push the programmer-defined error message.
ccPUSH((5L)); // Push the programmer-defined error number 5.
CcSET_LIBERR; // Indicates programmer-defined error for the ETAC interpreter.

Additional Information
Operational Definitions (ccRTNCDE VAR)

3.4.3 Resource Interface Definition Macros

These macros define and initialise a variable for use with the specified resource interface. The
macros do not actually create a resource interface, but only prepare the variable for use (by
initialising the variable with NULL).

ccSTACKOBJ

ccSTACKOBJ (mVar)

QOutput
mvar The variable name to hold a stack object resource interface (ccStackObj *).

Action
Defines and initialises a variable (mVar) to later hold a pointer to a stack object resource
interface. The macro does not allocate the resource interface.

Example
ccSTACKOB] (StkObj); /* Declare the StkObj variable to be allocated later. */

. /* Rest of code. */

CCSTRING

ccSTRING (mVar)

QOutput
mvar The variable name to hold a string resource interface (ccString *).

Action
Defines and initialises a variable (mVar) to later hold a pointer to a string resource interface. The
macro does not allocate the resource interface.

Example
ccSTRING (MyStr); /* Declare the MyStr variable to be allocated later. */

. /* Rest of code. */

CCcMEMORY

ccMEMORY (mVar)

Output
mvar The variable name to hold a memory resource interface (ccMemoryBlock *).

Action
Defines and initialises a variable (mVar) to later hold a pointer to a memory resource interface.
The macro does not allocate the resource interface.

Example
CcMEMORY (FileData); /* Declare the FileData variable to be allocated later. */

. /* Rest of code. */

ccSEQUENCE

CcSEQUENCE (mVar)

Output
mvar The variable name to hold a sequence resource interface (ccSequence *).

Action
Defines and initialises a variable (mVar) to later hold a pointer to a sequence resource interface.
The macro does not allocate the resource interface.

Example
CcSEQUENCE (ErrSeq); /* Declare the ErrSeq variable to be allocated later. */

. /* Rest of code. */

CcDICTIONARY

ccDICTIONARY (mVar)

Output

mvar The variable name to hold a dictionary resource interface (ccDictionary *).
Action

Defines and initialises a variable (mVar) to later hold a pointer to a dictionary resource interface.
The macro does not allocate the resource interface.

Example
ccDICTIONARY (MainDict); /* Declare the MainDict variable to be allocated later. */

. /* Rest of code. */

CccDATAOBJECT

ccDATAOBJECT (mVar)

Output
mvar The variable name to hold a data object resource interface (ccDataObject *).

Action

Defines and initialises a variable (mVar) to later hold a pointer to a data object resource
interface. The macro does not allocate the resource interface. Note that, currently, a data object
is implemented as a sequence, but should not be used as such. A data object resource interface is
used with the ccMakeDataObj () and ccGetDataDict () helper functions.

Example
ccDATAOBJECT (DataObj); /* Declare the DataObj variable to be allocated later. */

. /* Rest of code. */

3.4.4 Resource Interface Allocation and Release Macros

These macros define and allocate a variable with a specified resource interface (the variable need
not have been initialised, except for the ccNEW () macro). The macros actually create an empty
resource interface and initialise the variable with a pointer to that resource interface. For the
ccNEW () macro, the variable must have already been defined and initialised with NULL. The
ccFREE () macro releases the resource interface pointed to by a variable.

CcNEW

ccNEW (mVar)

Output
mvar The variable name to hold a new resource interface.

Dependencies

CCETAC_REF.

Action

Allocates a new empty resource interface to a variable (mvar), releasing the previous resource
interface if there was one. mVar must be correctly defined and initialised for the desired
resource interface before this macro is called. The resource interface must be released
(ccFREE (mVar)) when no longer in use.

Example
CCSTRING (MyStr); /* Declare the MyStr variable to be allocated later. */

ccNEW(MyStr); /* Allocate a new string resource interface into MyStr. */
ccNEW(MyStr); /* Release existing resource interface in MyStr and allocate a new one. */

Additional Information
Operational Definitions (ccETAC_REF)

Related Information
ccSTACKOB]J = ¢c¢cSTRING * ccMEMORY = ¢ccSEQUENCE = ccDICTIONARY = ¢ccFREE

Other Information
ccNEW_STACKOBJ = ¢ccNEW_STRING = ¢ccNEW_MEMORY = ccNEW_SEQUENCE
ccNEW_DICTIONARY

CcNEW_STACKOBJ

ccNEW_STACKOBJ (mVar)

Output

mvar The variable name to hold a new stack object resource interface
(ccStackObj *).

Dependencies

ccSTACKOBJ (), cCNEW () .

Action
Defines and allocates a variable (mVar) containing a new null stack object resource interface.
The resource interface must be released (ccFREE (mVar)) when no longer in use.

Example
ccNEW_STACKOBJ (StkObj); /* Declare and allocate the StkObj variable with a null stack

object resource interface. */
. /* Rest of code. */

CcNEW_STRING

CccNEW_STRING (mVar)

Output
mvar The variable name to hold a new string resource interface (ccString *).

Dependencies
CcSTRING (), ccNEW ().

Action
Defines and allocates a variable (mVar) containing a new empty string resource interface. The
resource interface must be released (ccFREE (mVar)) when no longer in use.

Example
ccNEW_STRING (MyStr); /* Declare and allocate the MyStr variable with an empty string

resource interface. */
. /* Rest of code. */

CccNEW_MEMORY

CcNEW_MEMORY (mVar)

Output

mvar The variable name to hold a new memory resource interface
(ccMemoryBlock *).

Dependencies

CCcMEMORY (), ccNEW () .

Action
Defines and allocates a variable (mVar) containing a new empty memory resource interface. The
resource interface must be released (ccFREE (mVar)) when no longer in use.

Example
ccNEW_MEMORY (FileData); /* Declare and allocate the FileData variable with an empty memory

resource interface. */
. /* Rest of code. */

ccNEW_SEQUENCE

CccNEW_SEQUENCE (mVar)

Output

mvar The variable name to hold a new sequence resource interface
(ccSequence *).

Dependencies

CcCcSEQUENCE (), ccNEW () .

Action
Defines and allocates a variable (mVar) containing a new empty sequence resource interface.
The resource interface must be released (ccFREE (mVar)) when no longer in use.

Example
ccNEW_SEQUENCE (ErrSeq); /* Declare and allocate the ErrSeq variable with an empty sequence

resource interface. */
. /* Rest of code. */

CcNEW_DICTIONARY

ccNEW_DICTIONARY (mVar)

Output

mvar The variable name to hold a new dictionary resource interface
(cchictionary *).

Dependencies

ccDICTIONARY (), ccNEW ().

Action
Defines and allocates a variable (mVar) containing a new empty dictionary resource interface.
The resource interface must be released (ccFREE (mVar)) when no longer in use.

Example
ccNEW_DICTIONARY (MainDict); /* Declare and allocate the MainDict variable with an empty

dictionary resource interface. */
... /* Rest of code. */

ccNEW_DATAOBJECT

CccNEW_DATAOBJECT (mVar)

Output
mvar The variable name to hold a new data object resource interface

(ccDataObject *).

Dependencies
ccDATAOBJECT (), ccNEW () .

Action

Defines and allocates a variable (mVar) containing a new empty data object resource interface.
The resource interface must be released (ccFREE (mVar)) when no longer in use. Note that,
currently, a data object is implemented as a sequence, but should not be used as such. A data
object resource interface is used with the ccMakeDataOb7j () and ccGetDataDict () helper
functions.

Example
ccNEW_DATAOBJECT (DataObj); /* Declare and allocate the DataObj variable with an empty

data object resource interface. */
. /* Rest of code. */

ccFREE

ccFREE (mVar)

Input
mvar The variable name that holds a resource interface to be released.

Dependencies

ccETAC_REF.

Action
Releases a resource interface allocated to a variable (mVar). Note that all resource interfaces
must be released when no longer in use.

Example
CCcRTNCODE; /* Declare the return code variable. */

CCNEW_STRING (MsgStr); /* Declare and allocate the MyStr variable. */

MsgStr->strAssign(); /* Use the MsgStr variable. */
ccPUSH((2L));

CccPUSH(());

ccPUSH((MsgStr));

CCCALLTAC(ccExecCmd ());

CCETAC_REF->ccPop();

CCEXITLBL:
ccFREE (MsgStr); /* Free the resource interface in the MsgStr variable. */

Additional Information

Operational Definitions (ccETAC_REF)

3.4.5 Member Function Execution Macros

These macros call member functions for the ETAC interface and resource interfaces that return a
return code (cc_rtn code). They automatically handle returned error code conditions.

ccCALL

ccCALL (mFnt)

Input

mFnt The expression of a member function of the ETAC interface or a resource
interface to be called, or the name and arguments of an ETL function to be
executed.

Dependencies

ccRTNCDE VAR, ccERROR, ccEXITLBL.

Action
Calls an ETAC interface or a resource interface member function (mFnt) that returns a return
code (cc_rtn code). If the member function returns an error (ccERROR) then control will jump

to the label defined by ccEXITLBL. Note that for member functions of the ETAC interface,
ccCALLTAC () can be used instead of this macro.

Example

ccRTNCODE; /* Declare the return code variable. */
CCNEW_SEQUENCE (MySeq); /* Declare and allocate the MySeq variable. */
ccINT MyInt = 3

(void)MySeq->sPut(MyInt); /* Append an integer to the sequence. */
ccCALL (MySeq->sGet(MyInt)); /* Retrieve the same integer. */

CcCALL (ccETAC_REF->ccPush(MyInt)); /* Push the integer to the object stack. */
CCCALL(MyETLFnt(MyInt)); /* Call an ETL function (needs appropriate setup). */

CCEXITLBL:
if (ccERROR) /* Detect and process error. */

{
}

Additional Information
Operational Definitions (ccRTNCDE VAR, ccEXITLBL)

: :etacProcessTACError (ccRTNCDE_VAR);

Other Information
ccCALLTAC

ccCALLTAC

ccCALLTAC (mFnt)

Input
mFnt The expression of a member function of the ETAC interface to be called.

Dependencies

ccCALL (), ccETAC REF.

Action

Calls an ETAC interface member function (mFnt) that returns a return code (cc_rtn code). If
the member function returns an error (ccERROR) then control will jump to the label defined by
ccEXITLRBL.

Example

ccRTNCODE; /* Declare the return code variable. */
CcCcPUSH(()); /* A prompt string to display to the console. */
CcCALLTAC (ccExecCmd()); /* Read a line from the console. */

CCETAC_REF->ccPop(); /* Discard the response from the user. */

CCEXITLBL:
if (ccERROR) /* Detect and process error. */

{
}

Additional Information

: :etacProcessTACError (ccRTNCDE_VAR);

Operational Definitions (ccETAC REF)

3.4.6 Stack Access Macros

These macros pull and push values as TAC objects from and onto the object stack (typically).
They automatically handle returned error code conditions.

ccPULL

ccPULL (mArgs)

Output
mArgs The arguments for ccPull () enclosed in parentheses.

Dependencies
ccCALLTAC ().

Action

Obtains the specified item (mArgs) from the top of the object stack (or dictionary stack as
appropriate), and pops (deletes) that topmost stack object from the said stack. If the macro
returns an error (ccERROR) then control will jump to the label defined by ccEXITLBL. Note that
mArgs are the arguments to ccPull () and must be enclosed in parentheses, for example,
ccPULL ((MyInt))

and

ccPULL ((MyCmd, ccTAC CMD)).

Additional Information
ccPull

ccPUSH

ccPUSH (mArgs)

Input
mMArgs The arguments for ccPush () enclosed in parentheses.

Dependencies
ccCALLTAC ().

Action

Pushes a stack object containing the specified item (mArgs) to the top of the object stack (or
dictionary stack as appropriate). If the macro returns an error (ccERROR) then control will jump
to the label defined by ccEXITLBL. Note that mArgs are the arguments to ccPush () and must be

enclosed in parentheses, for example,
ccPUSH ((MyInt))

and
ccPUSH ((MyCmd, ccTAC CMD)).

Additional Information

ccPush

3.4.7 Miscellaneous Macros

The following are miscellaneous macros.

ccSPCHAR

ccSPCHAR (mCharStr)

Input

mCharStr A non-empty wide-character (wchar t) string. Only the first character is
used, which must be a Unicode supplementary plane character.

Action

Converts a Unicode® supplementary plane character to the corresponding Unicode code point
compatible with ccCHAR. Only the first character of mCharStr is converted.

Example

CCcCHAR CodePoint; /* Will contain the code point of the specified character. */

CodePoint = ccSPCHAR(); /* Green Apple (U+1F34F) as a surrogate pair. */
/* CodePoint will contain the value 127823 (U+1F34F). */

3.5 c¢cTAC Class

The ccTAC C++ class represents the definition of the ETAC interface. The ETAC interface
contains only C++ virtual functions that point directly into the ETAC interpreter, and is the initial
means by which an application program and an external TAC library can communicate with the
ETAC interpreter. Some member functions of the ccTAC class provide the means by which other
resource interfaces can be created. The ETAC interface is not allocated or released by the C++
programmer.

An instance of a ccTAC class (the ETAC interface) can be obtained in the following ways:

1. Automatically passed to an ETL function by the ETAC interpreter.

2. Returned by the ccGetTACIF () member function of ccTAC, and passed to an ETL
function.

3. Returned by the etacSetAppETAC () function defined in AppETAC.dIl (for use in an
application program).

4. Automatically passed to the call-back function of an application program.

The ccTAC class is defined in the file ExternTACLib_n.h, which must be included in C++ source
code for creating external TAC libraries. The pre-processor definition ccTAC VRSN (defined in
ExternTACLib_n.h) defines the number n which indicates the version of the ccTAC class in use.
That number is the same as the n in AppETAC_n.h, which must be included in C++ source code
for application programs. The inclusion of those two files ensures that the appropriate version of
the ccTAC class is issued by the ETAC interpreter.

3.5.1 Function Summary
The following list is a summary of the member functions of the ccTAC class.

ccTAC Class Function Summary

Function Description

ccCountToMark Determines the number of top stack objects on the object stack up to
but not including the mark stack object.

ccDeleteDict Deletes a number of dictionaries on the dictionary stack at a position.

ccExecCmd Executes a command.

ccExecETAC Executes ETAC code directly from a disk file or memory.

ccGetDict Gets the named dictionary and its position.

ccGetDictOfItem Gets the dictionary (and its position) containing the named item.

ccGetObjType Gets the stack object type of the top stack object on the object stack.

ccGetTACIF Gets the appropriate ETAC interface for use with calling functions in
a loaded external TAC library.

ccNew Creates a resource interface to contain the resource value of a stack
object.

ccPop Pops (deletes) a number of top stack objects on the object stack.

ccPull Pulls the value of a stack object from the object stack into a variable.

ccPush Pushes the value of a variable onto the object stack.

ccRelease Releases a resource interface.

3.5.2 Member Functions
The following points apply to the member functions of the ccTAC class.

e For functions that return a cc_rtn code type, a success return code has the value of
CCTAC RTN SUCCESS.

e For functions that return a cc_rtn_code type, the return code should be returned to the

function’s caller.

e The ccCALLTAC macro can be used for functions that return a cc_rtn code type.

o Stack object types are automatically checked when being pulled from a TAC stack into the

corresponding variable — the return code will indicate an error if the stack object is not of
the type requested in the program.

e A pointer variable to a resource interface must initially be initialised with NULL.

e Variables for integral stack object values do not use resource interfaces; such variables are
defined as ccINT (these are stack objects of type: ccTAC INT, ccTAC CMDI, ccTAC OPRI,
ccTAC MARK, ccTAC NULL, CCTAC_EXE).

e A variable for a decimal stack object value does not use a resource interface; such a variable
is defined as ccDEC (stack object type is: ccTAC DEC).

e The order of the member functions declared in class ccTAC must not be altered except as
explained in Appendix A: Compatibility Issues.

The definitions of the ccTAC class member functions are as follows.

CcTAC: :ccCountToMark

CCULONG ccCountToMark (ccULONG pMarkNum = 0)

Input

pMarkNum The number (from 0 to 7) of a mark stack object on the object stack.

Return
The number of top stack objects on the object stack.

Action

Determines the number of top stack objects on the object stack up to but not including the
specified (pMarkNum) mark stack object. The input number (pMarkNum) is not included in the
count.

CCTAC: :ccDeleteDict

void ccDeleteDict (ccULONG pAmount = 1, ccULONG pPosition = 1)

Input

pAmount The number of dictionaries to delete from the dictionary stack. This number
can be 0.

pPosition The position of the first dictionary to delete from the top of the dictionary
stack. The topmost dictionary is at position 1.

Action

Deletes a number (pAmount) of dictionaries on the dictionary stack at a position (pPosition).
If pAmount is 0, or pPosition is O or greater than the number of dictionaries on the dictionary
stack then no action occurs. If pAmount is greater than the number of dictionaries at and after

the specified position, then the remaining dictionaries at and after the specified position are
deleted.

ccTAC: :ccExecCmd

cc rtn code ccExecCmd (ccSTR pCommand)
cc rtn code ccExecCmd (cc tac val pIntrCmd)

Input

pCommand The name of the command to execute, or NULL.
pIntrCmd The code (ccTAC I *) for an intrinsic command.
Return

Return code indicating the success or otherwise of the function.

Action

Syntax I
Executes a named command (pCommand) as though it were activated from ETAC code. If

pCommand is an empty string or NULL, no action occurs and the return code will indicate success.

Svntax 2
Executes an intrinsic command (pIntrCmd) as though it were activated from ETAC code. The

codes for intrinsic commands are specified in Intrinsic Command Codes.

Additional Information
Intrinsic Command Codes

CCTAC: :ccExecETAC

cc_rtn code ccExecETAC (ccSTR pETACCodeFile)
cc_rtn code ccExecETAC (ccMemoryBlock *pMemory)

Input
PETACCodeFile The file path specification of a file containing E7TAC code, or NULL.

pMemory The memory block containing ETAC code, or NULL.

Return
Return code indicating the success or otherwise of the function.

Action

Svntax I
Executes ETAC code directly from a disk file (pETACCodeFile) as though it were activated by

the exec_tac command. 1f pETACCodeFile is an empty string or NULL, no action occurs and
the return code will indicate success.

Syntax 2.
Executes ETAC code existing in a memory block (pMemory) as though it were activated by the

exec_tac command. 1f pMemory is NULL, no action occurs and the return code will indicate
success.

CCTAC: :ccGetDict

ccULONG ccGetDict (ccDictionary *&pDictionary, ccSTR pDictName,
int pInstance = 1)

Input

pDictName The name of the dictionary to get from the dictionary stack, or NULL.

pInstance A positive or negative integer indicating which instance of the named
dictionary to find (must not be 0).

Output

pDictionary The requested dictionary.

Return
Returns the position of the found dictionary from the top of the dictionary stack (topmost
dictionary is at position 1). Otherwise returns 0 if the dictionary was not found.

Action

Gets the named (pDictName) dictionary (pDictionary) and its position. If pInstance is
positive (n), the function will search for the n™ instance of the dictionary with name pDictName
from the top of the dictionary stack. 1f pInstance is negative (—n), the function will search for
the n™ instance of the dictionary with name pDictName from the bottom of the dictionary stack.

If pDictName is an empty string or NULL, an unnamed dictionary will be searched for. If
pInstance is 0, the consequence is undefined.

CCTAC: :ccGetDictOfItem

CCULONG ccGetDictOfItem (ccDictionary *&pDictionary, ccSTR pItemName,
int pInstance = 1)

Input

pIltemName The name of the dictionary item to search for on the dictionary stack, or NULL.

pInstance A positive or negative integer indicating which instance of the named
dictionary item to find on the dictionary stack.

Output

pDictionary The requested dictionary containing the specified instance of the dictionary
item.

Return
Returns the position of the found dictionary from the top of the dictionary stack (topmost
dictionary is position 1). Otherwise returns 0 if the dictionary item was not found.

Action

Gets the dictionary (pDictionary) containing the named dictionary item (pItemName) and the
position of that dictionary. If pInstance is positive (n), the function will search for the n™
instance of the dictionary item with name pItemName from the top of the dictionary stack. If
pInstance is negative (—n), the function will search for the n™ instance of the dictionary item
with name pItemName from the bottom of the dictionary stack.

If pItemName is an empty string or NULL, no action occurs and the returned value will be 0. If
pInstance is 0, the consequence is undefined.

CCTAC: :ccGetObjType

cc _rtn code ccGetObjType (cc tac type &pType)

Output
pType Type of topmost stack object on the object stack.

Return
Return code indicating the success or otherwise of the function.

Action
Retrieves the stack object type (pType) of the topmost stack object on the object stack. The
topmost stack object remains on the object stack.

Additional Information
TAC Object Types

CcTAC: :ccGetTACIF

ccTAC *ccGetTACIF (HMODULE pTACLibHndl, long pTACIFVrsn = 0)

Input

PTACLibHNndl The handle of a loaded external TAC library, or NULL.

PTACIFVrsn The version number of an ETAC interface, or 0. Version numbers begin with
1.

Return

A pointer to the requested ETAC interface, or NULL if the ETAC interface could not be obtained.

Action

Gets the appropriate ETAC interface for use with calling ETL functions in a loaded external TAC
library. 1f pTACLibHndl is NULL and pTACIFVrsn is O then no action occurs and NULL is
returned. If pTACLibHndl is not NULL then pTACIFVrsn is ignored. pTACLibHndl contains the
handle to the external TAC library obtained from the operating system functions
GetModuleHandle () or LoadLibrary (). If the version number of the ETAC interface for use
with the external TAC library is known (for certain), then pTACIFVrsn can specify that version
number and pTACLibHndl is set to NULL. The returned ETAC interface is used to call ETL
(’unctions in the specified external TAC library.

Additional Information
2.5 Calling ETL Functions from C++

CCcTAC: :ccNew

void ccNew (ccStackObj *&pStackObj)

void ccNew (ccString *&pString)

(
(
void ccNew (ccSequence *&pSequence)
void ccNew (ccMemory *&pMemory)

(

void ccNew (ccDictionary *&pDictionary)

Output

pStackObj A pointer to a resource interface for a stack object.

pString A pointer to a resource interface for a string value.

pSequence A pointer to a resource interface for a sequence resource value.
pMemory A pointer to a resource interface for a memory resource value.

pDictionary A pointer to a resource interface for a dictionary resource value.

Action

Creates a new resource interface and corresponding empty resource value for the specified item,
releasing the previous resource interface if there was one. The new resource value for
pStackObj will be a null stack object. A variable designated to be used as a resource interface
is declared as a pointer to that resource interface. That variable must be initialised with NULL
before its first use (including before calling this function). The resource interface of the variable
must be released (via ccRelease ()) when no longer in use.

Related Information
ccRelease

Other Information

ccNEW = ccNEW_STACKOBIJ = ¢ccNEW_STRING * ccNEW_MEMORY = ¢ccNEW_SEQUENCE
ccNEW_DICTIONARY

CCTAC: :ccPop

void ccPop (ccULONG pNumObjs = 1)

Input

pNumObj s The number of top stack objects to delete from the object stack. This number
can be 0.

Action

Pops (deletes) a number (pNumObjs) of top stack objects on the object stack.

CcTAC: :ccPull

cc_rtn code
cc_rtn code
cc_rtn code
cc_rtn code
cc_rtn code
cc_rtn code

cc_rtn code

Input
pTypel

pType2

pType3

pDictStack

Output
pStackObj

plInteger
pDecimal
pString

pSequence
pMemory

pDictionary

Return

ccPull (ccStackObj *&pStackObj)
ccPull (ccINT &pInteger, cc tac type pTypel =
ccPull (ccDEC &pDecimal)

(
(ccTAC INT)
(

ccPull (ccString *&pString, cc tac type pType2 =
(
(
(

CCTAC_STR)
ccPull (ccSequence *&pSequence, cc tac type pType3 = ccTAC SEQ)
ccPull (ccMemoryBlock *&pMemory)

ccPull (ccDictionary *&pDictionary, ccBOOL pDictStack = true)

Type of topmost stack object expected on the object stack. Possible values are:
ccTAC INT, ccTAC CMDI, ccTAC OPRI, ccTAC MARK, ccTAC NULL,
ccTAC EXE.

Type of topmost stack object expected on the object stack. Possible values are:
ccTAC STR, ccTAC CMD, ccTAC OPR.

Type of topmost stack object expected on the object stack. Possible values are:
ccTAC SEQ, ccTAC PROC.

Determines from which TAC stack the dictionary resource value is to be
retrieved. A value of true indicates the dictionary stack, otherwise it
indicates the object stack.

Receives the topmost stack object on the object stack.

Receives the integer value of the topmost stack object on the object stack.
Receives the decimal value of the topmost stack object on the object stack.
Receives the string value of the topmost stack object on the object stack.

Receives the sequence resource value of the topmost stack object on the object
stack.

Receives the memory resource value of the topmost stack object on the object
stack.

Receives the dictionary resource value of the topmost stack object.

Return code indicating the success or otherwise of the function.

Action

Each function obtains the specified item from the top of the specified 7AC stack, and pops
(deletes) that topmost stack object from that TAC stack. For output variables that point to a
resource interface, that resource interface is automatically released prior to receiving the
specified item in a new resource interface. If the topmost stack object is not of the same type as
specified or implied by the function, then the function returns a non-success return code.

Additional Information

TAC Object Types

Other Information

ccPULL

CcTAC: :ccPush

cc_rtn code ccPush (ccStackObj *pStackObj)
cc rtn code ccPush (ccINT pInteger, cc tac type pTypel = ccTAC INT)
cc _rtn code ccPush (ccDEC pDecimal)
cc_rtn code ccPush (ccSTR pString, cc tac type pType2 = ccTAC STR)
cc rtn code ccPush (ccString *pString, cc tac type pType2 = ccTAC STR)
cc _rtn code ccPush (ccSequence *pSequence, cc tac type pType3 = ccTAC SEQ)
cc_rtn code ccPush (ccMemoryBlock *pMemory)

(

cc _rtn code ccPush (ccDictionary *pDictionary, ccBOOL pDictStack = true)

Input

pStackOb] Contains a stack object to push onto the object stack (must not be NULL).

pInteger Contains an integer value to push as a stack object onto the object stack.

pDecimal Contains a decimal value to push as a stack object onto the object stack.

pString Contains a string value to push as a stack object onto the object stack, or NULL
(only if pType2 is ccTAC STR).

pSequence Contains a sequence resource value to push as a stack object onto the object
stack, or NULL.

pMemory Contains a memory resource value to push as a stack object onto the object

stack, or NULL.

pDictionary Contains a dictionary resource value to push as a stack object onto a TAC
stack, or NULL.

pTypel Type of stack object to be pushed onto the object stack. Possible values are:
ccTAC INT, ccTAC CMDI, ccTAC OPRI, ccTAC MARK, ccTAC NULL,
ccTAC EXE.

pType2 Type of stack object to be pushed onto the object stack. Possible values are:
ccTAC STR, ccTAC CMD, ccTAC OPR.

pType3 Type of stack object to be pushed onto the object stack. Possible values are:

ccTAC_SEQ, ccTAC PROC.

pDictStack Determines to which TAC stack the dictionary is to be pushed. A value of
true indicates the dictionary stack, otherwise it indicates the object stack.

Return
Return code indicating the success or otherwise of the function.

Action

Each function pushes a stack object containing the specified item to the top of the specified 74C
stack. For input resource variables, a copy of the resource object is pushed onto the specified
TAC stack. For input resource variables that contain NULL, the value of the stack object pushed
onto the TAC stack will be empty, except for a stack object resource variable (syntax 1) and for
string variables if pType?2 is not ccTAC STR (syntaxes 4 and 5). In those cases, the function
returns a non-success return code.

Additional Information
TAC Object Types

Other Information
ccPUSH

CcTAC: :ccRelease

void ccRelease (ccStackObj *&pStackObj)

void ccRelease (ccString *&pString)

(
(
void ccRelease (ccSequence *&pSequence)
void ccRelease (ccMemory *&pMemory)

(

void ccRelease (ccDictionary *&pDictionary)

Input

pStackObj A pointer to a resource interface for a stack object.

pString A pointer to a resource interface for a string value.

pSequence A pointer to a resource interface for a sequence resource value.
pMemory A pointer to a resource interface for a memory resource value.

pDictionary A pointer to a resource interface for a dictionary resource value.

Output

pStackOb] Set to NULL.
pString Set to NULL.
pSequence Set to NULL.
pMemory Set to NULL.

pDictionary Set to NULL.

Action

Releases the resource interface and its resource object for the specified item. No action occurs if
the resource variable contains NULL. The resource variable is set to NULL before this function
returns to the caller. The resource interface of a resource variable must be released when no
longer in use.

Related Information
ccNew

Other Information

ccFREE

3.6 ccStackObj Class

The ccStackObj C++ class is the resource interface containing an internal stack object. The
contained stack object is treated as a whole; the properties of the stack object are inaccessible.
Each stack object resource interface always contains its own individual stack object, but the
value of that stack object could be a resource value, meaning that it can be shared with the
resource values in other resource interfaces and stack objects of the same type. This class
exposes only C++ virtual functions that point directly into the ETAC interpreter.

The ccStackObj class is defined in the file ExternTACLib_n.h which must be included in C++
source code for creating external TAC libraries. The pre-processor definition ccTAC VRSN
(defined in ExternTACLib_n.h) defines the number n which indicates the version of the
ccStackObj class in use. That number is the same as the n in AppETAC_n.h which must be
included in C++ source code for application programs. The inclusion of those two files ensures
that the appropriate version of the ccStackObj class is created by the ETAC interpreter.

3.6.1 Function Summary

The following list is a summary of the member functions of the ccStackObject class.

ccStackObject Class Function Summary

Function Description
soCopyObj Copies the stack object to another.
soDuplicateObj Duplicates the stack object to another.

3.6.2 Member Functions

The definitions of the ccStackObject class member functions are as follows.

ccStackObj: :soCopyObj

cc_rtn code soCopyObj (ccStackObj *&pStackObj)

Output
pStackObj Receives a copy of the stack object contained in this resource interface.

Return
Return code indicating the success or otherwise of the function.

Action

Copies the stack object contained in this resource interface to the stack object contained in
another resource interface (pStackObj). If pStackObj contains NULL, a resource interface for
pStackObj is allocated before the copy.

ccStackObj::soDuplicateObj

cc rtn code soDuplicateObj (ccStackObj *&pStackObj)

Output
pStackOb] Receives a duplicate of the stack object contained in this resource interface.

Return
Return code indicating the success or otherwise of the function.

Action

Duplicates the stack object contained in this resource interface to the stack object contained in
another resource interface (pStackObj). If pStackObj contains NULL, a resource interface for
pStackObj is allocated before the duplication.

3.7 ccString Class

The ccString class is the resource interface containing an internal stack object Unicode string
value. The contained string is modified by the resource interface member functions. Each string
resource interface always contains its own individual string (strings are not a shared resource).
This class exposes only C++ virtual functions that point directly into the ETAC interpreter.

The ccString class is defined in the file ExternTACLib_n.h which must be included in C++
source code for creating external TAC libraries. The pre-processor definition ccTAC VRSN
(defined in ExternTACLib_n.h) defines the number n which indicates the version of the ccString
class in use. That number is the same as the n in AppETAC_n.h which must be included in C++
source code for application programs. The inclusion of those two files ensures that the
appropriate version of the ccString class is created by the ETAC interpreter.

3.7.1 Function Summary

The following list is a summary of the member functions of the ccString class.

ccString Class Function Summary

Function Description

strAppend Appends a specified substring to the string.

strAssign Assigns a specified substring to the string.

strDeleteStr Deletes a substring from the string.

strFindAndRepStr Replaces each occurrence of a specified substring with a string.
strGetChar Gets a character from the string.

strGetStrBuff Gets a pointer to the string buffer which can be modified.
strGetStrPtr Gets a temporary pointer to the raw string.

strInsertStr Inserts a specified string into the string.

strLength Gets the length of the string.

strPutChar Replaces a character in the string.

strReleaseStrBuff Releases the string buffer obtained via strGetStrBuff ().
strStrip Removes specified characters from the string.
strUCharCount Determines the number of u-char characters in the string.
strWCharCount Determines the number of w-char characters for a given number of

u-char characters the string.

3.7.2 Member Functions

The definitions of the ccString class member functions are as follows.

ccString: :strAppend

cc _rtn code strAppend (ccSTR pString, ccULONG pOffset = O,
ccULONG pLength = ccS REMAINING LENGTH)

cc rtn code strAppend (ccString *pString, ccULONG pOffset = O,
ccULONG pLength = ccS REMAINING LENGTH)

cc _rtn code strAppend (ccCHAR pCharacter)

Input

pString Contains the string value (or part thereof) to append, or NULL.

pOffset Zero-based w-char character offset into the string to append.

pLength Length of the substring (in w-char characters) to append, or
ccS REMAINING LENGTH.

pCharacter u-char character, as a Unicode scalar value, to append.

Return

Return code indicating the success or otherwise of the function.

Action

Appends a substring of a string (pString) beginning at an offset (pOffset) and of a specified
length (pLength) to the end of the string value contained in this resource interface. 1f pString
i1s NULL, or pOffset is out of range, then no action occurs. A value of ccS REMAINING LENGTH
for pLength indicates the rest of the string from the offset.

Also appends a u-char character to the end of the string value contained in this resource
interface.

Note that the substring specified by pOffset and pLength must be a well-formed Unicode
substring, and pCharacter must be a valid Unicode scalar value, otherwise
ccTAC RTN BAD OBJ VAL will be returned.

ccString::strAssign

cc _rtn code strAssign (ccSTR pString, ccULONG pOffset = O,
ccULONG pLength = ccS REMAINING LENGTH)

cc _rtn code strAssign (ccString *pString, ccULONG pOffset = O,
ccULONG pLength = ccS REMAINING LENGTH)

Input

pString Contains the string value (or part thereof) to assign, or NULL.

pOffset Zero-based w-char character offset into the string to assign.

pLength Length of the substring (in w-char characters) to assign, or
ccS REMAINING LENGTH.

Return

Return code indicating the success or otherwise of the function.

Action

Replaces the string value contained in this resource interface with a substring of a string
(pString) beginning at an offset (pOffset) and of a specified length (pLength). If pString is
NULL, or pOffset is out of range, then an empty string is assumed for pString. A value of
ccS REMAINING LENGTH for pLength indicates the rest of the string from the offset.

Note that the substring specified by pOffset and pLength must be a well-formed Unicode
substring, otherwise ccTAC_RTN BAD OBJ VAL will be returned.

ccString: :strDeleteStr

cc rtn code strDeleteStr (ccULONG pOffset = O,
ccULONG pLength = ccS REMAINING LENGTH)

Input

pOffset Zero-based w-char character offset into this string to delete.

pLength Length of the substring (in w-char characters) to delete, or
ccS REMAINING LENGTH.

Return

Return code indicating the success or otherwise of the function.

Action

Deletes the substring of the string value contained in this resource interface beginning at an
offset (pOffset) and of a specified length (pLength). A value of ccS REMAINING LENGTH for
pLength indicates the rest of the string from the offset. If pOffset is out of range then no
action occurs.

Note that the substring specified by pOffset and pLength must be a well-formed Unicode
substring, otherwise ccTAC_RTN BAD OBJ VAL will be returned.

ccString: :strFindAndRepStr

cc_rtn code strFindAndRepStr (ccSTR pSearchStr, ccSTR pReplStr)

Input

pSearchStr Substring to search for, or NULL.

PReplStr String to replace the found substring, or NULL.
Return

Return code indicating the success or otherwise of the function.

Action

Searches the string value contained in this resource interface for the existence of a specified
substring (pSearchStr) and replaces each occurrence of the substring with a string (pReplStr).
If either pSearchStr or pReplStr is NULL, or the substring is not found, then no action occurs.

Note that the strings specified by pSearchStr and pReplStr must be a well-formed Unicode
strings, otherwise ccTAC RTN BAD OBJ VAL will be returned.

ccString: :strGetChar

ccCHAR strGetChar (ccINT pOffset)

Input
pOffset Zero-based u-char character offset into this string.

Return
The u-char character at the specified offset, or a null-terminator character (U+0000).

Action

Gets the character at an offset (pOffset) into the string value contained in this resource
interface. 1f pOffset is a non-negative number then the offset is from the beginning of the
string, otherwise it is from the end of the string (-1 is the last u-char character of the string). If
pOffset is out of range then a null-terminator character (U+0000) is returned.

ccString: :strGetStrBuff

ccMSTR strGetStrBuff (ccULONG pMinLen = 0)

Input

pMinLen The minimum size (in w-char characters) of the returned buffer. This value
does not include space for a null-terminator.

Return

A pointer to the requested string buffer containing the null-terminated string.

Action

Gets a pointer to the raw string buffer of the string value contained in this resource interface.
The size of the buffer is large enough to hold the string value, or the size specified in pMinLen if
that size is larger. The contents of the string buffer can be directly modified via the returned
pointer (but not modified beyond the size of the buffer). A null-terminating character (0x00) can
be inserted into the buffer to indicate the end of the new modified string.

When finished with the string buffer, or before using any other ccString member function for
any string, strReleaseStrBuff () must be called.

Related Information
strReleaseStrBuff

ccString: :strGetStrPtr

ccSTR strGetStrPtr ()

Return
A temporary pointer to the raw (null-terminated) string value contained in this resource interface.

Action

Gets a pointer to the raw string value contained in this resource interface. The string value
MUST NOT BE MODIFIED IN ANY WAY. The returned pointer is temporary, and will
become invalid if any other ccString member function for any string is called. The returned
pointer is typically used only for reading the string value for use with string functions that require
a raw null-terminated string.

ccString::strInsertStr

cc _rtn code strInsertStr (ccULONG pOffset, ccSTR pInsStr,
ccULONG pLength = ccS REMAINING LENGTH, ccCHAR pPad = L' ')

Input

pOffset Zero-based w-char character offset into this string.

pInsStr The string to insert.

pLength Length of the initial substring (in w-char characters) of the string to insert, or
ccS REMAINING LENGTH.

pPad A UCS-2 pad character.

Return

Return code indicating the success or otherwise of the function.

Action

Inserts the initial substring of the specified character length (pLength) of a string (pInsStr) into
the string value contained in this resource interface beginning at an offset (pOffset). If the
value of pLength is greater than the w-char length of pInsStr then the extra places at the end of
pInsStr will effectively be filled with the pad character (pPad) before the insertion. The pad
character must be a UCS-2 (BMP Unicode scalar value) character, otherwise

ccTAC_RTN GENERAL ERR will be returned. pInsStr itself will not be altered. A value of

ccS REMAINING LENGTH for pLength indicates the length of pInsStr. pOffset contains a
zero-based character offset into this string value. The first character inserted into this string
value will be at offset pOffset. If pOffset is greater than the length of this string value then
the extra places between the end of this string value and the position at pOffset will be filled
with the pad character.

Note that the substring specified by the first pLength characters of pInsStr must be a well-
formed Unicode substring, and pOffset must address a valid u-char character, otherwise
ccTAC_RTN BAD OBJ VAL will be returned.

ccString::strLength

CCULONG strLength ()

Return
The w-char character length of this string.

Action
Returns the w-char character length of the string value contained in this resource interface. An
empty string will return a length of 0.

Other Information

strUCharCount = strWCharCount

ccString: :strPutChar

cc_rtn code strPutChar (ccCHAR pCharacter, ccINT pOffset)

Input

pCharacter u-char character, as a Unicode scalar value, to put.
pOffset Zero-based u-char character offset into this string.
Return

Return code indicating the success or otherwise of the function.

Action

Replaces the u-char character at an offset (pOffset) of the string value contained in this
resource interface with another character (pCharacter). If pOffset is a non-negative number
then the offset is from the beginning of the string, otherwise it is from the end of the string (-1 is
the last u-char character of the string). If pOffset is out of range then no action occurs.

Note that pCharacter must be a valid Unicode scalar value, otherwise
ccTAC_RTN BAD OBJ VAL will be returned.

ccString: :strReleaseStrBuff

void strReleaseStrBuff (ccULONG pNewLen = ccSTR AUTOLEN)

Input
pNewLen The new w-char character length of the released buffer, or ccSTR AUTOLEN.

Action

Releases the raw string buffer of the string value of this resource interface returned from a call to
strGetStrBuff (). If a null-terminator character (U+0000) was not inserted into the buffer, but
the desired character length of the string in the buffer is different from the original length, then
pNewLen must contain the desired character length of the string. Otherwise, the default value
(ccSTR_AUTOLEN) of pNewLen should be used. If the value of pNewLen is ccSTR AUTOLEN then
the string in the buffer is expected to be null-terminated (which indicates the length of that
string).

Related Information
strGetStrBuff

ccString: :strStrip

void strStrip (ccCHAR pMode = L'B', ccSTR pList = 1L" ")

Input
pMode Determines the location of characters to strip from this string. Possible values

are: 'L', 'R', 'B', 'A".

pList A list of u-char characters to strip from this string.

Action

Strips off u-char characters specified in a list (pList) from the string value of this resource
interface. pList contains the characters to strip. Each character in pList is removed from the
string value depending on the value of pMode. pMode specifies from which part of this string
value to strip the characters. pMode is interpreted as follows:

pMode Action

'L’ (Left) Remove all leading characters as specified in pList.

'R’ (Right) Remove all trailing characters as specified in pList.

'B' (Both) Remove all leading and trailing characters as specified in pList.
A (All) Remove all characters as specified in pList.

If the value of pMode is not one of the above characters then no action occurs.

ccString: :strUCharCount

ccULONG strUCharCount ()

Return
The u-char character length of this string.

Action
Returns the u-char character length of the string value contained in this resource interface. An
empty string will return a length of 0.

Other Information
strLength = strWCharCount

ccString: :striWCharCount

cc_rtn code strWCharCount (ccULONG &pCount, ccINT pStartOff,
ccINT pNumUChars = -1)

Input
pStartOff Zero-based w-char or u-char character offset into this string.

pNumUChars The number of u-char characters in the specified substring of this string.

Output
pCount w-char character length of the specified substring.

Return
Return code indicating the success or otherwise of the function.

Action

Returns the w-char character length (pCount) of the string value contained in this resource
interface, beginning at a w-char or u-char offset (pStartOff) and a subsequent number
(pNumUChars) of u-char characters from that offset. If pStartOff is a non-negative number
then it is a w-char offset into this string. If pStartOff is a negative number then the negation of
pStartOff is a u-char offset into this string. pNumUChars is the number of u-char characters
specifying the substring of this string beginning at the effective offset implied by pStartOff. A
value of —1 for pNumUChars indicates the rest of the characters in this string from the effective
offset.

Note that the substring specified by pStartOff and pNumUChars must be a well-formed Unicode
substring, otherwise ccTAC_RTN BAD OBJ VAL will be returned.

Other Information

strLength = strUCharCount

3.8 ccMemoryBlock Class

The ccMemoryBlock class is the resource interface containing an internal stack object memory
resource value. The contained resource value (sometimes called a “‘memory block’) is modified
by the resource interface member functions. The resource value of a memory resource interface
can be shared with other memory resource interfaces and memory stack objects. This class
exposes only C++ virtual functions that point directly into the ETAC interpreter.

The ccMemoryBlock class is defined in the file ExternTACLib_n.h which must be included in C++
source code for creating external TAC libraries. The pre-processor definition ccTAC VRSN
(defined in ExternTACLib_n.h) defines the number n which indicates the version of the
ccMemoryBlock class in use. That number is the same as the n in AppETAC_n.h which must be
included in C++ source code for application programs. The inclusion of those two files ensures
that the appropriate version of the ccMemoryBlock class is created by the ETAC interpreter.

Unicode File Specification

A file specification string in ETAC cannot contain unpaired Unicode surrogate code points. If
a file specification containing such code points needs to be specified, the MS-DOS® short
(8dot3) format of the file specification should be used. The short format for files and
directories can be displayed from an MS-DOS® command prompt window by typing the
command dir with the option /X. The operating system may need to be configured to store the
short format of file specifications.

Important Note

3.8.1 Function Summary
The following list is a summary of the member functions of the ccMemoryBlock class.

Function
mbAllocate

mbAppendMem
mbApplyBOM
mbCopyMem
mbCvtDataTo
mbDuplicateMem
mbExport

mbGetDataPtr
mbGetDataSize
mbGetErrCode
mbGetMemSize
mbImport

ccMemoryBlock Class Function Summary

Description

Allocates or reallocates the memory block size, retaining the data if
possible.

Appends another memory block to the memory block.

Inserts or removes the actual BOM signature of the memory block.
Copies the whole memory block to another.

Converts the data to the specified data form.

Duplicates the whole memory block to another.

Exports the data in the memory block to pre-allocated external
memory or to a string.

Gets a temporary pointer to the memory block.
Gets the size of the data in the memory block.
Gets the error code of certain functions.

Gets the size of the memory block.

Appends a string to the data in the memory block.

mbInsert Inserts an amount of data at the start of a memory block into the
memory block at an offset.

mbLoad Loads pre-allocated external memory into the memory block,
overwriting existing data.

mbReadWholeFile Loads the data in a disk file into the memory block. Overwrites
existing data.

mbRepDataForm Marks the memory object with the specified data form.

mbRepDstPath Replaces the destination file path of the memory block.

mbRepSrcPath Replaces the source file path of the memory block.

mbReserveExtraMem Extends the size of the reserved memory in the memory block. The
data size is unchanged.

mbSet Sets all the data in the memory block to a byte value.
mbSetDataSize Sets the size of the data in the memory block.
mbWriteWholeFile Writes all the data in the memory block to a disk file.

3.8.2 Member Functions

The following points apply to the member functions of the ccMemoryBlock class.
¢ A ‘memory block’ is the actual total memory allocated.
o A memory block is automatically expanded to accommodate additional data.

e The ‘useable data’ in a memory block is the leading amount of data in that memory block that
is considered valid; data after the usable data is considered to be garbage.

e The actual size of a memory block is equal to or larger than the usable data of that memory
block.

The definitions of the ccMemoryBlock class member functions are as follows. Note that when
modifying a memory resource value, memory stack objects in ETAC code and in other memory
resource interfaces can refer to that resource value.

ccMemoryBlock: :mbAllocate

void mbAllocate (ccULONG pSize = ccM DEFAULT SIZE)

Input

pSize Size (in bytes) of the allocated or reallocated memory block, or
ccM DEFAULT SIZE.

Action

Allocates or reallocates the memory block of the memory resource value of this resource
interface to the specified size (pSize), retaining the usable data if possible. The default size
(ccM DEFAULT SIZE)is 50,000 bytes. If the value of pSize is smaller than the size of the
usable data size, then the size of the usable data will be truncated to the value of pSize.

ccMemoryBlock: :mbAppendMem

void mbAppendMem (ccMemoryBlock *pMemory)

Input
pMemory Contains the data to append to this memory block, or NULL.

Action

Appends the usable data of a memory block (pMemory) to the usable data of the memory
resource value of this resource interface. pMemory points to the resource interface containing
the data to append. If pMemory is NULL then no action occurs.

ccMemoryBlock: :mbApplyBOM

ccBOOL mbApplyBom (ccBOOL pInsert = true)

Input
pInsert Indicates whether to insert (true) or remove (false) the BOM signature.

Return
Returns true if pInsert is true and a BOM signature was inserted or if pInsert is false and
a BOM signature was removed. Returns false in other cases.

Action

Inserts (if pInsert is true) or removes (if pInsert is false) the appropriate BOM (byte order
mark) signature of the usable data of the memory resource value (memory block) of this resource
interface. If pInsert is true, a BOM signature is inserted at the beginning of the memory block
as appropriate for the memory block’s data form after the removal of an existing BOM signature.
If pInsert is false, an existing BOM signature is removed from the memory block. If the
memory block’s data form is ccMO BIN or ccMO TXT, no action occurs and false is returned.

The Unicode®™ BOM signatures are defined as follows for the stated encoding scheme. A BOM
signature must be at the beginning of the usable data of the memory block for it to be recognised.

UTF-8: EFBBBF}
UTF-16LE: FFFEy UTF-32LE: FFFE00004
UTF-16BE: FEFFy UTF-32BE: 0000FEFEH

ccMemoryBlock: :mbCopyMem

void mbCopyMem (ccMemoryBlock *&pDestMem)

Output
pDestMem Receives a copy of this memory resource object.

Action

Copies the resource object of this resource interface to the resource object of another memory
resource interface (pDestMem). If pDestMem contains NULL, a resource interface for pDestMem
is allocated before the copy. If pDestMem and this resource interface contain the same memory
resource value (memory block) then no action occurs. Both resource interfaces will share the
same memory block after the copy.

ccMemoryBlock: :mbCvtDataTo

ccBOOL mbCvtDataTo (ccINT pDataForm)

Input

pDataForm Indicates the data form to convert to. Possible values are: ccMO_BIN,
ccMO_ TXT, ccMO U8, ccMO Ul6 LE, ccMO Ul6 BE, ccMO U32 LE,
ccMO_U32 BE, ccMO NATIVE, ccMB VERIFY, ccMB DETERMINE.

Return

As describe under Action.

Action

Converts the usable data of the memory resource value (memory block) of this resource interface
to the requested data form (pDataForm) as specified in the table Data Form Indicators. The
consequence is undefined for invalid values of pDataForm. false is returned if an attempted
conversion fails. Refer to the cvt_data to command in “The Official ETAC Programming
Language” (ETACProgLang(Official).pdf) for details of the conversion.

If the value of pDataFormis ccMB VERIFY or the same as the internal data form indicator, then
the usable data of the memory block is verified to conform to its internal data form indicator, and
true is returned on a successful verification.

If the value of pDataForm is ccMB DETERMINE, then the usable data of the memory block is
(re)determined as is done for the mbReadWholeFile () function, and the usable data will not be
modified except for the possible removal of the BOM signature. true is returned. The internal
data form indicator and BOM status in the memory resource value may be modified.

Additional Information

mbReadWholeFile

ccMemoryBlock: :mbDuplicateMem

void mbDuplicateMem (ccMemoryBlock *&pDestMem)

Output
pDestMem Receives a duplicate of this memory block.

Action

Duplicates the resource object of this resource interface to the resource object of another
memory resource interface (pDestMem). If pDestMem contains NULL, a resource interface for
pDestMem is allocated before the duplication. 1f pDestMem points to this resource interface, and
the contained memory resource value (memory block) has no other managed reference pointing
to it, then no action occurs. Otherwise, the resource value of pDestMem is released and a new
one is allocated before the duplication, and the two resource interfaces (if they are not the same
one) will not share the same memory block after the duplication. After this function completes,
the memory block of pDestSeq will have only one managed reference pointing to it.

ccMemoryBlock: :mbExport

CcCULONG mbExport (void *pDestMem, ccULONG pMemSize)
ccBOOL mbExport (ccString *&pString)

Input
pMemSize The size (in bytes) of the external memory area to receive data.

Output
pDestMem A pointer to the external memory area to receive data (must not be NULL).
p y

pString A string value to receive data.

Return

Syntax I: The number of bytes copied to the external memory area.

Syntax 2: Returns true if the memory block data was converted and exported to pString
successfully, otherwise returns false.

Action

Syntax I
Copies the usable data of the memory block of this resource interface to pre-allocated external

memory (pDestMem), overwriting any existing data. It is important that pDestMem points to
memory (allocated by the caller before this function is called) of at least the size contained in
pMemSize, otherwise the consequence is unpredictable. The size of the data copied to the
external memory will be the minimum of the size contained in pMemSize and the size of the
usable data of this memory block. pDestMem must not be NULL, otherwise the consequence is
unpredictable.

Syntax 2
Copies the usable data of the memory block of this resource interface to the string value of

another resource interface (pString), overwriting the existing string value. The usable data of
the memory block is assumed to contain a UTF or Windows-1252 string. The string in the
memory block must occupy the whole of the usable data without containing a string terminator
character (U+0000), otherwise the consequence is undefined. If necessary, an internal copy of
the usable data is converted via the equivalent of mbCvtDataTo (ccMO NATIVE). If pString
contains NULL, a resource interface for pString is allocated before the data is copied.

Additional Information

mbCvtDataTo

Other Information

mbGetDataSize

ccMemoryBlock: :mbGetDataPtr

ccBYTE *mbGetDataPtr ()

Return
A temporary pointer to the raw memory data contained in this resource interface.

Action

Gets a temporary pointer to the raw data in the memory block of this resource interface. The
returned pointer is temporary, and will become invalid if any other ccMemoryBlock member
function that could alter this memory block is called. The usable data of this memory block can
be altered via the returned pointer, but the possibility of other managed references pointing to
this memory block should be taken into account. Note that memory stack objects in ETAC code
can refer to this memory block.

Other Information

mbGetDataSize

ccMemoryBlock: :mbGetDataSize

ccULONG mbGetDataSize ()

Return
The byte size of the usable data of the memory block contained in this resource interface.

Action

Gets the size of the usable data of the memory block contained in this resource interface. The
size of the actual memory block can be larger than the size of the usable data of that memory
block. The data after the usable data of the memory block is considered to be garbage.

Other Information

mbGetMemSize

ccMemoryBlock: :mbGetErrCode

ccINT mbGetErrCode ()

Return
Returns the current error code.

Action
Gets the error code after calling certain functions. The non-zero error code can be passed to
etacProcessTACError ().

Related Information
etacProcessTACError

ccMemoryBlock: :mbGetMemSize

ccULONG mbGetMemSize ()

Return
The byte size of the memory block contained in this resource interface.

Action

Gets the size of the memory block contained in this resource interface. The size of the memory
block can be greater than the size of the usable data of that memory block. The data after the
usable data of the memory block is considered to be garbage.

Other Information
mbGetDataSize

ccMemoryBlock: :mbImport

ccBOOL mbImport (ccSTR pStringl, ccULONG pOffset = O,
ccULONG pStrLen = ccM REMAINING AMOUNT)

ccBOOL mbImport (ccString *pString2)

Input

pStringl Contains the string (or part thereof) to import, or NULL.

pOffset Zero-based w-char character offset into the string to import.

pStrlen Length of the substring (in w-char characters) to import, or
ccM REMAINING AMOUNT.

pString2 Contains the string value to import, or NULL.

Return

Returns true if the specified string or substring was imported successfully, otherwise returns
false.

Action

Appends a substring of a string (pStringl) or whole string (pString2) to the end of the usable
data of the memory block contained in this resource interface. The usable data size of this
memory block is automatically expanded to accommodate the string.

Syntax I
The string to append is a substring of pStringl beginning at an offset (pOffset) and of a

specified length (pStrLen). If pOffset is out of range then the consequence is unpredictable.
If pStringl is NULL then no action occurs. A value of ccM REMAINING AMOUNT for pStrLen
indicates the rest of the string from the offset. An internal copy of the specified string or

substring may be automatically converted before being appended to the memory block data.
Refer to the heading Adding Data to Memory under the add operator in “The Official ETAC
Programming Language” (ETACProgLang(Official).pdf) for details of the conversion.

Note that the substring specified by pOffset and pStrLen must be a well-formed Unicode
substring, otherwise false will be returned.

Svntax 2.
The string to append is the string value contained in the resource interface pointed to by

pString2. If pString2 is NULL then no action occurs.

ccMemoryBlock: :mbInsert

void mbInsert (ccMemoryBlock *pMemory, ccULONG pOffset = O,
ccULONG pStart = 0, ccULONG pAmount = ccM REMAINING AMOUNT)

Input

pMemory Contains the memory block (or part thereof) to insert, or NULL.

pOffset Offset (in bytes) of where the data is to be inserted into this memory block.
pStart Offset (in bytes) into the source memory block (pMemory) of the data to insert.
pAmount Size of the data (in bytes) to insert, or ccM REMAINING AMOUNT.

Action

Inserts an amount (pAmount) of usable data at an offset (pStart) of a memory block (pMemory)
into the memory block contained in this resource interface at an offset (pOffset). The size of
this memory block is automatically expanded to accommodate the inserted data if necessary. The
value of pOffset must be less than the size of the usable data of this memory block, and the
value of pStart must be less than the size of the usable data of the memory block of pMemory,
otherwise the consequence is unpredictable. If pMemory is NULL then no action occurs.

Other Information

mbGetDataSize

ccMemoryBlock: :mbLoad

void mbLoad (void *pMem, ccULONG pMemSize)

Input

pMem Pointer to initialised raw external memory data to load, or NULL.
pMemSize Size (in bytes) of the raw external memory data to load.

Action

Replaces the usable data of the memory block of this resource interface with the data in pre-
allocated external memory (pMem) of the specified size (pMemSize). It is important that pMem
points to memory (allocated by the caller before this function is called) of at least the size
contained in pMemSize, otherwise the consequence is unpredictable. If pMem is NULL then the
size of the usable data of this memory block becomes zero (the size of the actual memory block
itself remains unaltered), and pMemSize is ignored.

ccMemoryBlock: :mbReadWholeFile

ccULONG mbReadWholeFile (ccSTR pFilePath, ccULONG pFlags = 0x00000000)
CcULONG mbReadWholeFile (ccString *pFilePath, ccULONG pFlags = 0x00000000)

Input
pFilePath Contains the file path of the file data to load, or NULL.
pFlags A combination of the following binary flags: ccRF ERR FATAL,
ccRF NO DATA CHK, ccRF BOM, ccRF NBOM, ccRF RET BOM STATE.
Return

The size of the loaded data in bytes, —1, or 0.

Action

Loads all of the data in a disk file (pFilePath) into the usable data of the memory block of this
resource interface, replacing the existing usable data. If pFilePath is NULL then no action
occurs. The size of this memory block is automatically expanded to accommodate the loaded data
if necessary. The internal input file path of the memory block will be set to the value of
pFilePath. A fatal error (the application program or ETAC could terminate) will occur if the
specified file cannot be read from or does not exist and ccRF_ERR FATAL is set in pFlags.

pFlags contains a combination of the following values.

pFlags Meaning
ccRF_ERR FATAL Causes a fatal error event that cannot be captured when a fatal error

occurs. If this option is omitted, a fatal error event causes —1 to be
returned, and the error number can be obtained from the function
mbGetErrCode ().

ccRF_NO DATA CHK Reads the input file data without checking its data form. The memory
block data form indicator will be ccMO BIN, and the internal BOM
status flag will be cleared. If this value is omitted, the data form of the
input file data will be determined.

ccRF_BOM Ignored for memory block data form indicators of ccMO BIN and
ccMO TXT. Forces the internal BOM status flag of the memory block
to be set. Mutually exclusive with ccRF_NBOM.

ccRF NBOM Ignored for memory block data form indicators of ccMO BIN and
ccMO_TXT. Forces the internal BOM status flag of the memory block
to be cleared. Mutually exclusive with ccRF BOM.

ccRF_RET BOM STATE Returns the initial BOM status of the memory block. -1 will be
returned if the BOM status flag is set, otherwise 0 will be returned.

If ccRF_RET BOM STATE is set in pFlags, the return value could be -1, indicating either that
the internal BOM status flag was set, or a fatal error event had occurred. To determine whether a
fatal error event had occurred, call mbGetErrCode () which will return a non-zero error code
(otherwise it returns zero if a fatal error event had not occurred). That non-zero error code can be
passed to etacProcessTACError (). If a fatal error event had not occurred, the returned value
indicates the BOM status before the pFlags option ccRF BOM or ccRF NBOM is applied, but after
the file data is read.

If the specified file has no data (empty file), then the usable data in the memory block will be
zero and the internal data form indicator of the memory block will be ccMO BIN.

Refer to the read file command in “The Official ETAC Programming Language”
(ETACProgLang(Official).pdf) for details of the process of reading the file data via this function.

Additional Information

Unicode File Specification * mbGetErrCode

Related Information
etacProcessTACError

ccMemoryBlock: :mbRepDataForm

ccINT mbRepDataForm (ccINT pDataForm, ccULONG pFlags = 0x00000000)

Input
pDataForm Value to set the internal data form indicator of the memory resource value.

Possible values are: ccMO BIN, ccMO TXT, ccMO U8, ccMO Ul6 LE,
ccMO U16 BE, ccMO U32 LE, ccMO U32 BE, ccMO NATIVE, ccMB RETAIN,
ccMB RET BOM STATE.

pFlags Binary flags indicating whether to set or clear the internal BOM status flag.
Possible mutually exclusive values are: ccMO BOM, ccMO NBOM.

Return
The existing internal data form indicator or BOM status.

Action

Sets or returns the internal data form (pDataForm) and BOM status (pFlags) indicators of the
memory resource value of this resource interface. The various data forms to set are specified in
the table Data Form Indicators. The consequence is undefined for invalid values of pDataForm.
The contents of the memory resource value is not modified, but the data form and\or BOM
indicators internal to the memory resource value may be modified.

If the value of pDataFormis ccMB RETAIN, the internal data form indicator of the memory
resource value will remain unmodified.

If the value of pDataFormis ccMB_RET BOM STATE, the internal BOM status of the memory
resource value is returned; the returned value will be -1 if the BOM status flag is set, otherwise it
will be 0. The internal data form indicator of the memory resource value will remain
unmodified.

The value of pFlags determines whether to set (ccMO BOM) the internal BOM status flag of the
memory resource value, or clear it (ccMO_NBOM). ccMO BOM and ccO_NBOM are mutually
exclusive. The value of pFlags will have no effect if the new or existing internal data form
indicator is either ccMO BIN or ccMO TXT.

The internal data form indicator of a memory stack object is maintained automatically by other
relevant functions and commands. This function should only be used in those cases when it is not
possible for the internal data form indicator to be automatically maintained.

Warning
Changing the internal data form indicator of a memory stack object to a data form that is
inconsistent with the actual data form of the memory data could result in errors at a later stage, or
the consequence could be unpredictable. However, it is always safe to change the data form
indicator of any memory stack object to ccMO_BIN.

ccMemoryBlock: :mbRepDstPath

cc_rtn code mbRepDstPath (ccString *&pOldPath, ccSTR pNewPath)
void mbRepDstPath (ccString *&pOldPath, ccString *pNewPath)

Input

pNewPath The new internal destination file path to set in the memory resource value, or
NULL.

Output

pOldPath The existing internal destination file path in the memory resource value before
it is altered.

Return

Return code indicating the success or otherwise of the function (for the first syntax only).

Action

Gets (pOldPath) or sets (pNewPath) the internal destination file path of the memory resource
value of this resource interface. The internal destination file path remains unmodified if
pNewPath is NULL. The internal destination file path is used by the mbWriteWholeFile ()
function.

Additional Information
Unicode File Specification

Related Information
mbWriteWholeFile

ccMemoryBlock: :mbRepSrcPath

cc_rtn code mbRepSrcPath (ccString *&pOldPath, ccSTR pNewPath)
void mbRepSrcPath (ccString *&pOldPath, ccString *pNewPath)

Input
pNewPath The new internal source file path to set in the memory resource value, or NULL.

Output
pOldPath The existing internal source file path in the memory resource value before it is

altered.

Return
Return code indicating the success or otherwise of the function (for the first syntax only).

Action

Gets (pO1ldPath) or sets (pNewPath) the internal source file path of the memory resource value
of this resource interface. The internal source file path remains unmodified if pNewPath is
NULL. The internal source file path is used by the mbReadWholeFile () function.

Additional Information
Unicode File Specification

Related Information
mbReadWholeFile

ccMemoryBlock: :mbReserveExtraMem

CccULONG mbReserveExtraMem (ccULONG pSize)

Input
pSize The amount (in bytes) of memory to extend this memory block.

Return
The new size of this memory block in bytes.

Action
Extends the size of the memory block of this resource interface by a specified amount (pSize).
The size of the usable data of this memory block remains unchanged.

ccMemoryBlock: :mbSet

void mbSet (ccBYTE pChar = '\Q0')

Input
pChar The byte value to set for this memory block.

Action
Sets all of the data of the memory block of this resource interface to the specified byte value
(pChar). The size of the usable data of this memory block remains unchanged.

ccMemoryBlock: :mbSetDataSize

ccULONG mbSetDataSize (ccULONG pSize)

Input
pSize The size (in bytes) to set for the usable data of this memory block.

Return
The new size of the usable data of the memory block contained in this resource interface.

Action

Sets the size (pSize) of the usable data of the memory block contained in this resource interface.
If the value of pSize is greater than the size of the memory block, then the size of the usable data
will be set to the size of the memory block. Note that if the value of pSize is greater than the
size of the existing usable data, then the data beyond that existing usable data is considered to be
garbage.

Other Information
mbGetDataSize = mbGetMemSize » mbReserveExtraMem

ccMemoryBlock: :mbWriteWholeFile

ccBOOL mbWriteWholeFile (ccSTR pFilePath, ccBOOL pAppend = false,
ccULONG pFlags = 0x00000000)

ccBOOL mbWriteWholeFile (ccString *pFilePath, ccBOOL pAppend = false,
ccULONG pFlags = 0x00000000)

Input
pFilePath Contains the file path of the file to which data will be written, or NULL.

pAppend Determines whether to append (true) to or replace (false) the file data.

pFlags A combination of the following binary flags: ccWF ERR FATAL,
CCWE WIN 1252, ccWEF BOM, ccWE NBOM.

Return
Returns true if all the usable data of this resource interface was written to the specified file,
otherwise returns false.

Action

Writes all the usable data of the memory block of this resource interface to a specified
(pFilePath) disk file, appending to or replacing the existing file data as specified (pAppend). A
fatal error (the application program or ETAC could terminate) will occur if the specified file
cannot be written to. If the file does not exist, a new one will be created (this includes creating
the relevant non-existing directories).

pFlags contains a combination of the following values.

pFlags Meaning
CCWF_ERR FATAL Causes a fatal error event that cannot be captured when a fatal error

occurs. If this option is omitted, a fatal error event causes false to be
returned, and the error number can be obtained from the function
mbGetErrCode ().

CCWF WIN 1252 Temporarily converts the memory data to Windows-1252 before
writing if possible. No BOM signature is written if this option is
specified and the conversion is successful.

ccWE BOM Ignored for memory block data form indicators of ccMO BIN and
ccMO_TXT. Forces a BOM signature to be written unless pAppend is
true or the ccWF WIN 1252 option is specified. Mutually exclusive
with ccWF _NBOM. This option does not affect the internal BOM status
of the memory block.

CCWF NBOM Ignored for memory block data form indicators of ccMO BIN and
ccMO TXT. Prevents a BOM signature from being written. Mutually
exclusive with ccWF BOM. This option does not affect the internal
BOM status of the memory block.

If the return value is false, either not all the memory block data was written to the file, or a fatal
error event occurred. To determine whether a fatal error event had occurred, call

mbGetErrCode () which will return a non-zero error code (otherwise it returns zero if a fatal
error event had not occurred). That non-zero error code can be passed to
etacProcessTACError ().

pFilePath contains the file path of the file to be written to. If pFilePath is an empty string,
then the internal input file path of the memory block is used as pFilePath. If pFilePath is
NULL, then the internal output file path of the memory block is used instead. But if the internal
output file path is empty, then the internal input file path of the memory block is used as
pFilePath. The internal output file path of the memory block is set to the effective value of
pFilePath. A fatal error event will occur if the effective value of pFilePath is an empty
string.

Refer to the write file command in “The Official ETAC Programming Language”
(ETACProgLang(Official).pdf) for the effects of the ccWF WIN 1252 option of pFlags and the
internal BOM status of the memory block.

Additional Information

Unicode File Specification * mbGetErrCode

Related Information
etacProcessTACError

3.9 ccSequence Class

The ccSequence class is the resource interface containing an internal sequence resource value.
The contained resource value is modified by the resource interface member functions. The
resource value of a sequence resource interface can be shared with other sequence resource
interfaces and sequences. This class exposes only C++ virtual functions that point directly into
the ETAC interpreter.

The ccSequence class is defined in the file ExternTACLib_n.h which must be included in C++
source code for creating external TAC libraries. The pre-processor definition ccTAC VRSN
(defined in ExternTACLib_n.h) defines the number n which indicates the version of the
ccSequence class in use. That number is the same as the n in AppETAC_n.h which must be
included in C++ source code for application programs. The inclusion of those two files ensures
that the appropriate version of the ccSequence class is created by the ETAC interpreter.

3.9.1 Function Summary

The following list is a summary of the member functions of the ccSequence class.

ccSequence Class Function Summary

Function Description

sAppendSeq Appends another sequence to the sequence.

sCopySeq Copies the whole sequence to another.

sDeleteAll Deletes all the elements of the sequence.

sDeleteElms Deletes a range of elements of the sequence.

sDuplicateSeq Duplicates the whole sequence to another.

sGet Gets the value of a stack object from the sequence into a variable.
sGetE1lmType Gets the stack object type of an element in the sequence.
sInsert Inserts a value in a variable into the sequence.

sPut Replaces an element in the sequence with the value in a variable.
sSize Gets the number of elements in the sequence.

3.9.2 Member Functions
The definitions of the ccSequence class member functions are as follows. Note that when

modifying a sequence resource value, sequences in ETAC code and in other sequence resource
interfaces can refer to that resource value.

ccSequence: :sAppendSeq

void sAppendSeq (ccSequence *pSrcSeq, ccBOOL pCopyElms = true)

Input

pSrcSeq Contains the elements of the sequence resource value to append to this
sequence resource value, or NULL.

pCopyElms Determines whether to copy (true) or duplicate (false) the source elements

to this sequence resource value.

Action

Appends the elements of a sequence resource value (pSrcSeq) to the sequence resource value of
this resource interface. If pCopyElms is true, then each element of pSrcSeq is copied,
otherwise each element of pSrcSeq is duplicated, before being appended to the end of this
sequence. If pSrcSeq is NULL then no action occurs.

ccSequence: :sCopySeq

void sCopySeq (ccSequence *&pDestSeq)

Output
pDestSeq Receives a copy of this sequence resource value.

Action

Copies the resource object of this resource interface to the resource object of another sequence
resource interface (pDestSeq). If pDestSeq contains NULL, a resource interface for pDestSeq
is allocated before the copy. If pDestSeq and this resource interface contain the same sequence
resource value then no action occurs. Both resource interfaces will share the same sequence
resource value after the copy.

ccSequence: :sDeleteAll

void sDeleteAll ()

Action
Deletes all the elements of the sequence resource value of this resource interface.

ccSequence: :sDeleteElms

void sDeleteElms (ccULONG pIndex = ccLAST IDX, ccULONG pAmount = 1)

Input

pIndex The zero-based index of the first element to delete, or ccLAST IDX.
pAmount The number of elements to delete from the specified index (0 or greater).
Action

Deletes a number (pAmount) of elements of the sequence resource value of this resource
interface beginning with the element at the specified index (pIndex). A value of ccLAST IDX
for pIndex indicates the last element in this sequence resource value. The value of pAmount can
be greater than the number of elements after the first one to be deleted. If pIndex is out of range
then no action occurs.

ccSequence: :sDuplicateSeq

void sDuplicateSeq (ccSequence *&pDestSeq)

Output
pDestSeq Receives a duplicate of this sequence resource value.

Action

Duplicates the resource object of this resource interface to the resource object of another
sequence resource interface (pDestSeq). If pDestSeq contains NULL, a resource interface for
pDestSeq is allocated before the duplication. 1f pDestSeq points to this resource interface, and
the contained sequence resource value has no other managed reference pointing to it, then no
action occurs. Otherwise, the resource value of pDestSeq is released and a new one is allocated

before the duplication, and the two resource interfaces (if they are not the same one) will not
share the same sequence resource value after the duplication. After this function completes, the
sequence resource value of pDestSeq will have only one managed reference pointing to it.

ccSequence: :sGet

cc rtn code sGet (ccStackObj *&pStackObj, ccULONG pIndex = ccLAST IDX)

cc _rtn code sGet (ccINT &pInteger, cc tac type pTypel = ccTAC INT,
ccULONG pIndex = ccLAST IDX)

cc rtn code sGet (ccDEC &pDecimal, ccULONG pIndex = ccLAST IDX)

cc rtn code sGet (ccString *&pString, cc tac type pType2 = ccTAC STR,
ccULONG pIndex = ccLAST IDX)

cc rtn code sGet (ccSequence *&pSequence, cc tac type pType3 = ccTAC SEQ,
ccULONG pIndex = ccLAST IDX)

cc _rtn code sGet (ccMemoryBlock *&pMemory, ccULONG pIndex = ccLAST IDX)
cc_rtn code sGet (ccDictionary *&pDictionary, ccULONG pIndex = ccLAST IDX)

Input

pTypel Type of stack object expected at the specified index. Possible values are:
CCTAC INT, ccTAC CMDI, ccTAC OPRI, ccTAC MARK, ccTAC NULL,
ccTAC EXE.

pType2 Type of stack object expected at the specified index. Possible values are:
ccTAC STR, ccTAC CMD, ccTAC OPR.

pType3 Type of stack object expected at the specified index. Possible values are:
ccTAC SEQ, ccTAC PROC.

pIndex Zero-based index of the element to extract, or ccLAST IDX.

Output

pStackOb] Receives the stack object existing at the specified index.

pInteger Receives the integer value existing at the specified index.

pDecimal Receives the decimal value existing at the specified index.

pString Receives the string value existing at the specified index.

pSequence Receives the sequence resource value existing at the specified index.

pMemory Receives the memory resource value existing at the specified index.

pDictionary Receives the dictionary resource value existing at the specified index.

Return
Return code indicating the success or otherwise of the function.

Action

Each function obtains a copy of the value of the stack object at an index (pIndex) of the
sequence resource value of this resource interface into the specified output variable. A value of
ccLAST IDX for pIndex indicates the last element in this sequence resource value. For output
variables that point to a resource interface, that resource interface is automatically released prior
to receiving the specified item in a new resource interface. If the element at pIndex is not of the
same type as specified or implied by the function, or if pIndex is out of range, then the function
returns a non-success return code.

Additional Information

TAC Object Types

ccSequence: :sGetElmType

cc_rtn code sGetElmType (cc tac type &pType, ccULONG pIndex = ccLAST IDX)

Input
pIndex The zero-based index of the stack object element from which to obtain the

type, or ccLAST IDX.

Output
pType Receives the type of stack object existing at the specified index.

Return
Return code indicating the success or otherwise of the function.

Action

Gets the type (pType) of the stack object at an index (pIndex) of the sequence resource value of
this resource interface. A value of ccLAST IDX for pIndex indicates the last element in this
sequence resource value. 1f pIndex is out of range then the function returns a non-success return
code.

Additional Information
TAC Object Types

ccSequence: :sInsert

ccBOOL sInsert (ccStackObj *pStackObj, ccULONG pIndex)

ccBOOL sInsert (ccINT pInteger, ccULONG pIndex,
cc _tac type pTypel = ccTAC INT)

ccBOOL sInsert (ccDEC pDecimal, ccULONG pIndex)

ccBOOL sInsert (ccSTR pString, ccULONG pIndex,
cc _tac type pType2 = ccTAC STR)

ccBOOL sInsert (ccString *pString, ccULONG pIndex,
cc _tac type pType2 = ccTAC STR)

ccBOOL sInsert (ccSequence *pSequence, ccULONG pIndex,
cc _tac type pType3 = ccTAC SEQ)

ccBOOL sInsert (ccMemoryBlock *pMemory, ccULONG pIndex)
ccBOOL sInsert (ccDictionary *pDictionary, ccULONG pIndex)

Input

pStackOb] Contains a stack object to insert at the specified index (should not be NULL).

pInteger Contains an integer value to insert at the specified index.

pDecimal Contains a decimal value to insert at the specified index.

pString Contains a string value to insert at the specified index, or NULL (only if
pType2 is ccTAC STR).

pSequence Contains a sequence resource value to insert at the specified index, or NULL.

pMemory Contains a memory resource value to insert at the specified index, or NULL.

pDictionary Contains a dictionary resource value to insert at the specified index, or NULL.

pTypel Type of stack object to be inserted at the specified index. Possible values are:
ccTAC INT, ccTAC CMDI, ccTAC OPRI, ccTAC MARK, ccTAC NULL,
ccTAC EXE.

pType2 Type of stack object to be inserted at the specified index. Possible values are:

CCTAC STR, ccTAC CMD, ccTAC OPR.

pType3 Type of stack object to be inserted at the specified index. Possible values are:
ccTAC_SEQ, ccTAC PROC.

pIndex Zero-based index at which the element is to be inserted, or ccLAST IDX.

Return
Returns true if the function succeeded, otherwise returns false.

Action

Each function inserts a stack object containing the specified item into the sequence resource
value of this resource interface at an index (pIndex). Existing elements within this sequence
resource value at and after the specified index (if any) will be moved to their next position before
the insertion is made. No element within this sequence resource value is deleted. A value of
ccLAST IDX for pIndex indicates the last element in this sequence resource value. An element
can be inserted after the last one in this sequence resource value by specifying an index value one
greater than the last index value. For input resource variables, a copy of the resource object of
that variable is inserted. For input resource variables that contain NULL, the inserted stack object
will have an empty resource value, except for a stack object resource variable (syntax 1) and for
string variables if pType?2 is not ccTAC STR (syntaxes 4 and 5). In those cases, the function
returns false. If pIndex is out of range then the function returns false.

Additional Information

TAC Object Types

ccSequence: :sPut

ccBOOL sPut (ccStackObj *pStackObj, ccULONG pIndex = ccNEXT IDX)

ccBOOL sPut (ccINT pInteger, cc tac type pTypel = ccTAC INT,
ccULONG pIndex = ccNEXT IDX)

ccBOOL sPut (ccDEC pDecimal, ccULONG pIndex = ccNEXT IDX)

ccBOOL sPut (ccSTR pString, cc tac type pType2 = ccTAC STR,
ccULONG pIndex = ccNEXT IDX)

ccBOOL sPut (ccString *pString, cc tac type pType2 = ccTAC STR,
ccULONG pIndex = ccNEXT IDX)

ccBOOL sPut (ccSequence *pSequence, cc tac type pType3 = ccTAC SEQ,
ccULONG pIndex = ccNEXT IDX)

ccBOOL sPut (ccMemoryBlock *pMemory, ccULONG pIndex = ccNEXT IDX)
ccBOOL sPut (ccDictionary *pDictionary, ccULONG pIndex = ccNEXT IDX)

Input

pStackObj Contains a stack object to put at the specified index (should not be NULL).

pInteger Contains an integer value to put at the specified index.

pDecimal Contains a decimal value to put at the specified index.

pString Contains a string value to put at the specified index, or NULL (only if pType2
i1s ccTAC STR).

pSequence Contains a sequence resource value put at the specified index, or NULL.

pMemory Contains a memory resource value put at the specified index, or NULL.

pDictionary Contains a dictionary resource value put at the specified index, or NULL.

pTypel Type of stack object to be put at the specified index. Possible values are:
ccTAC INT, ccTAC CMDI, ccTAC OPRI, ccTAC MARK, ccTAC NULL,
ccTAC EXE.

pType2 Type of stack object to be put at the specified index. Possible values are:

ccTAC STR, ccTAC CMD, ccTAC OPR.

pType3 Type of stack object to be put at the specified index. Possible values are:
ccTAC_SEQ, ccTAC PROC.

pIndex Zero-based index at which the element is to be put, or can be ccNEXT IDX or
CcCLAST IDX.

Return
Returns true if the function succeeded, otherwise returns false.

Action

Each function replaces the element of the sequence resource value of this resource interface at an
index (pIndex) with a stack object containing the specified item. A value of ccNEXT IDX for
pIndex indicates the next element after the last one in this sequence resource value;

ccLAST IDX for pIndex indicates the last element. For input resource variables, a copy of the
resource object of that variable is put. For input resource variables that contain NULL, the
inserted stack object will have an empty resource value, except for a stack object resource
variable (syntax 1) and for string variables if pType2 is not ccTAC STR (syntaxes 4 and 5). In
those cases, the function returns false. If pIndex is out of range then the function returns
false.

Additional Information

TAC Object Types

ccSequence::sSize

ccULONG sSize ()

Return
The number of element in the sequence resource value contained in this resource interface.

Action
Gets the number of elements in the sequence resource value contained in this resource interface.

3.10 ccDictionary Class

The ccDictionary class is the resource interface containing an internal dictionary resource
value. The contained resource value is modified by the resource interface member functions.
The resource value of a dictionary resource interface can be shared with other dictionary
resource interfaces and dictionaries. This class exposes only C++ virtual functions that point
directly into the ETAC interpreter.

The ccDictionary class is defined in the file ExternTACLib_n.h which must be included in C++
source code for creating external TAC libraries. The pre-processor definition ccTAC VRSN
(defined in ExternTACLib_n.h) defines the number n which indicates the version of the
ccDictionary class in use. That number is the same as the n in AppETAC_n.h which must be
included in C++ source code for application programs. The inclusion of those two files ensures
that the appropriate version of the ccDictionary class is created by the ETAC interpreter.

3.10.1 Function Summary
The following list is a summary of the member functions of the ccDictionary class.

ccDictionary Class Function Summary

Function Description

dCopyDict Copies the whole dictionary to another.

dDeleteAll Deletes all the dictionary items in the dictionary.

dDeleteItem Deletes the dictionary item at an index.

dDuplicateDict Duplicates the whole dictionary to another.

dExecItemObj Executes the stack object of a dictionary item at an index.
dFindItem Gets the position of a dictionary item in the dictionary.
dGetDictFlags Gets the flags associated with the dictionary.

dGetDictName Gets the name of the dictionary.

dGetItemName Gets the name of the dictionary item at an index.

dGetItemObj Gets the value of a stack object of a dictionary item into a variable.
dGetItemType Gets the stack object type of a dictionary item at an index.
dNewItem Creates a new dictionary item from the value of a variable.
dNumSameItems Determines the number of dictionary items having the same name

(dictionary keyword) in the dictionary.
dPutDictFlags Sets or clears selected flags associated with this dictionary.
dPutItemObj Replaces the stack object of a dictionary item with the value of a
variable.

dSetDictName Sets the name of the dictionary.

dSetItemName Sets the name of the dictionary item at an index.

dsize Gets the total number of dictionary items in the dictionary.
3.10.2 Member Functions

The following points apply to the member functions of the ccDictionary class.

e Dictionary items are accessed via an index number. Index number zero is the bottommost
dictionary item; the highest index (for example, ccLAST IDX) is the topmost dictionary item.

e Dictionary keywords do not need to be unique within the same dictionary and among other

dictionaries.

The definitions of the ccDictionary class member functions are as follows. Note that when

modifying a dictionary resource value, dictionaries in ETAC code and in other dictionary
resource interfaces can refer to that resource value.

ccDictionary: :dCopyDict

void dCopyDict (ccDictionary *&pDestDict)

Output
pDestDict

Action

Receives a copy of this dictionary resource value.

Copies the resource object of this resource interface to the resource object of another dictionary
resource interface (pDestDict). If pDestDict contains NULL, a resource interface for
pDestDict is allocated before the copy. If pDestDict and this resource interface contain the

same dictionary resource value then no action occurs. Both resource interfaces will share the
same dictionary resource value after the copy.

ccDictionary: :dDeleteAll

void dDeleteAll ()

Action
Deletes all the dictionary items of the dictionary resource value of this resource interface. Note
that if this dictionary resource value has stack objects linked to it then no dictionary item will be
deleted.

ccDictionary: :dDeleteItem

ccBOOL dDeleteItem (ccULONG pIndex)

Input
pIndex The zero-based index of the dictionary item to delete, or ccLAST IDX.

Return
Returns true if the function succeeded, otherwise returns false.

Action

Deletes the dictionary item of the dictionary resource value of this resource interface at the
specified index (pIndex). A value of ccLAST IDX for pIndex indicates the last (topmost)
dictionary item in this dictionary resource value. 1f this dictionary resource value has stack
objects linked to it, or pIndex is out of range, then the dictionary item will not be deleted and
this function will return false.

ccDictionary: :dDuplicateDict

void dDuplicateDict (ccDictionary *&pDestDict)

Output
pDestDict Receives a duplicate of this dictionary resource value.

Action

Duplicates the resource object of this resource interface to the resource object of another
dictionary resource interface (pDestDict). If pDestDict contains NULL, a resource interface
for pDestDict is allocated before the duplication. 1f pDestDict points to this resource
interface, and the contained dictionary resource value has no other managed reference pointing
to it, then no action occurs. Otherwise, the resource value of pDestDict is released and a new
one is allocated before the duplication, and the two resource interfaces (if they are not the same
one) will not share the same dictionary resource value after the duplication. After this function
completes, the dictionary resource value of pDestDict will have only one managed reference
pointing to it.

ccDictionary: :dExecItemObj

cc_rtn code dExecItemObj (ccULONG pIndex, ccTAC *pTAC)

Input
pIndex The zero-based index of the dictionary item to execute, or ccLAST IDX.

PTAC A pointer to the ETAC interface in use (must not be NULL).

Return
Return code indicating the success or otherwise of the function or executed stack object.

Action

Executes (activates) the stack object of the dictionary item at an index (pIndex) of the dictionary
resource value of this resource interface. A value of ccLAST IDX for pIndex indicates the last
(topmost) dictionary item in this dictionary resource value. The return code returned by the
executed stack object is returned by this function.

If pIndex is out of range then the function returns a non-success return code. If pTAC is NULL,
the consequence is unpredictable.

ccDictionary: :dFindItem

ccULONG dFindItem (ccSTR pItemName, int pInstance = 1)

Input

pIltemName The name of the dictionary item to get (should not be NULL).

pInstance A positive or negative integer indicating which instance of the named
dictionary item to find (must not be 0).

Return

Returns the position of the found dictionary item from the top of the contained dictionary
resource value (topmost dictionary item is at position 1). Otherwise returns ccNOT FOUND if the
dictionary item was not found.

Action

Gets the position of the dictionary item having the specified (pItemName) dictionary keyword
existing in the dictionary resource value of this resource interface. Note that the position of the
dictionary item is not the same as the item’s index. If pInstance is positive (n), the function
will search for the n™ instance of the dictionary item with name pItemName from the top of the
dictionary resource value. 1f pInstance is negative (-n), the function will search for the n™
instance of the dictionary item with name pItemName from the bottom of the dictionary resource
value.

If pITtemName is NULL, the function will return ccNOT FOUND. If pInstance is 0, the
consequence is undefined.

ccDictionary: :dGetDictFlags

CCULONG dGetDictFlags ()

Return
Returns the binary flags of this dictionary resource value.

Action

Gets the binary flags associated with the dictionary resource value of this resource interface.
The returned flags include the internal flags for this dictionary resource value as well as the
programmer-defined flags set via dPutDictFlags ().

Additional Information

Dictionary Binary Flags = dPutDictFlags

ccDictionary: :dGetDictName

void dGetDictName (ccString *&pName)

Output
pName Receives the name of this dictionary resource value.

Action
Retrieves the name of the dictionary resource value of this resource interface. If pName contains
NULL, a resource interface for pName is allocated to receive the requested name.

ccDictionary: :dGetItemName

ccBOOL dGetItemName (ccString *&pName, ccULONG pIndex)

Input
pIndex The zero-based index of the dictionary item from which to obtain the

dictionary keyword, or ccLAST IDX.

Output
pName Receives the dictionary keyword (name) of the specified dictionary item.

Return
Returns true if the function succeeded, otherwise returns false.

Action

Gets the dictionary keyword (pName) of the dictionary item at an index (pIndex) of the
dictionary resource value of this resource interface. A value of ccLAST IDX for pIndex
indicates the last (topmost) dictionary item in this dictionary resource value. If pName contains
NULL, a resource interface for pName is allocated to receive the requested name. If pIndex is out
of range then the function returns false.

ccDictionary: :dGetItemObj

cc_rtn code dGetItemOb]j (ccULONG pIndex, ccStackObj *&pStackObj)

cc _rtn code dGetItemObj (ccULONG pIndex, ccINT &plInteger,
cc _tac type pTypel = ccTAC INT)

cc _rtn code dGetItemObj (ccULONG pIndex, ccDEC &pDecimal)

cc _rtn code dGetItemObj (ccULONG pIndex, ccString *&pString,
cc tac type pType2 = ccTAC STR)

cc _rtn code dGetItemObj (ccULONG pIndex, ccSequence *&pSequence,
cc _tac type pType3 = ccTAC SEQ)

cc _rtn code dGetItemObj (ccULONG pIndex, ccMemoryBlock *&pMemory)
cc rtn code dGetItemObj (ccULONG pIndex, ccDictionary *&pDictionary)

Input

pTypel Type of stack object expected at the specified index. Possible values are:
ccTAC INT, ccTAC CMDI, ccTAC OPRI, ccTAC MARK, ccTAC NULL,
CcTAC EXE.

pType?2 Type of stack object expected at the specified index. Possible values are:
ccTAC STR, ccTAC CMD, ccTAC OPR.

pType3 Type of stack object expected at the specified index. Possible values are:

ccTAC SEQ, ccTAC PROC.

pIndex Zero-based index of the dictionary item to access, or ccLAST IDX.

Output

pStackObj Receives the stack object existing at the specified index.

pInteger Receives the integer value existing at the specified index.

pDecimal Receives the decimal value existing at the specified index.

pString Receives the string value existing at the specified index.

pSequence Receives the sequence resource value existing at the specified index.
pMemory Receives the memory resource value existing at the specified index.

pDictionary Receives the dictionary resource value existing at the specified index.

Return
Return code indicating the success or otherwise of the function.

Action

Each function obtains a copy of the value of the stack object of the dictionary item at an index
(pIndex) of the dictionary resource value of this resource interface into the specified output
variable. A value of ccLAST IDX for pIndex indicates the last (topmost) dictionary item in this
dictionary resource value. For output variables that point to a resource interface, that resource
interface 1s automatically released prior to receiving the specified item in a new resource
interface. If the element at pIndex is not of the same type as specified or implied by the
function, or if pIndex is out of range, then the function returns a non-success return code.

Additional Information

TAC Object Types

ccDictionary: :dGetItemType

cc_rtn code dGetItemType (cc tac type &pType, ccULONG pIndex)

Input
pIndex The zero-based index of the dictionary item from which to obtain the

associated stack object type, or ccLAST IDX.

QOutput
pType Receives the type of stack object existing at the specified index.

Return
Return code indicating the success or otherwise of the function.

Action

Gets the type (pType) of the stack object of the dictionary item at an index (pIndex) of the
dictionary resource value of this resource interface. A value of ccLAST IDX for pIndex
indicates the last (topmost) dictionary item in this dictionary resource value. 1f pIndex is out of
range then the function returns a non-success return code.

Additional Information

TAC Object Types

ccDictionary: :dNewItem

ccBOOL dNewItem (ccSTR pltemName, ccStackObj *pStackObj,
ccULONG pIndex = ccNEXT IDX)

ccBOOL dNewItem (ccSTR pItemName, ccINT pInteger,
cc _tac type pTypel = ccTAC INT, ccULONG pIndex = ccNEXT IDX)

ccBOOL dNewItem (ccSTR pItemName, ccDEC pDecimal,
ccULONG pIndex = ccNEXT IDX)

ccBOOL dNewItem (ccSTR pItemName, ccSTR pString,
cc tac type pType2 = ccTAC STR, ccULONG pIndex = ccNEXT IDX)

ccBOOL dNewItem (ccSTR pItemName, ccString *pString,
cc tac type pType2 = ccTAC STR, ccULONG pIndex = ccNEXT IDX)

ccBOOL dNewItem (ccSTR pltemName, ccSequence *pSequence,
cc _tac type pType3 = ccTAC SEQ, ccULONG pIndex = ccNEXT IDX)

ccBOOL dNewItem (ccSTR pItemName, ccMemoryBlock *pMemory,
ccULONG pIndex = ccNEXT IDX)

ccBOOL dNewItem (ccSTR pItemName, ccDictionary *pDictionary,
ccULONG pIndex = ccNEXT IDX)

Input

pltemName The dictionary keyword (name) of a new dictionary item to insert at the
specified index (should not be NULL).

pStackOb] Contains a stack object of a new dictionary item to insert at the specified index
(should not be NULL).

pInteger Contains an integer value of a new dictionary item to insert at the specified
index.

pDecimal Contains a decimal value of a new dictionary item to insert at the specified
index.

pString Contains a string value of a new dictionary item to insert at the specified index,
or NULL (only if pType2 is ccTAC STR).

pSequence Contains a sequence resource value of a new dictionary item to insert at the
specified index, or NULL.

pMemory Contains a memory resource value of a new dictionary item to insert at the

specified index, or NULL.
pDictionary Contains a dictionary resource value of a new dictionary item to insert at the
specified index, or NULL.

pTypel Type of stack object of the dictionary item to be inserted at the specified index.
Possible values are: ccTAC INT, ccTAC CMDI, ccTAC OPRI, ccTAC MARK,
CCTAC NULL, ccTAC EXE.

pType2 Type of stack object of the dictionary item to be inserted at the specified index.
Possible values are: ccTAC STR, ccTAC CMD, ccTAC OPR.

pType3 Type of stack object of the dictionary item to be inserted at the specified index.
Possible values are: ccTAC SEQ, ccTAC PROC.

pIndex Zero-based index at which the specified item is to be inserted, or ccNEXT IDX.

Return

Returns true if the function succeeded, otherwise returns false.

Action
Each function inserts a dictionary item having a stack object containing the specified item into
the dictionary resource value of this resource interface at an index (pIndex). Existing

dictionary items within this dictionary resource value at and after the specified index (if any) will
be moved to the next position (towards the top of the dictionary) before the insertion is made. No
dictionary item within this dictionary resource value is deleted. A value of ccNEXT IDX for
pIndex indicates a dictionary item created after the last one in this dictionary resource value;
that dictionary item becomes the topmost dictionary item. For input resource variables, a copy of
the resource object of that variable is inserted. For input resource variables that contain NULL,
the inserted stack object will have an empty resource value, except for a stack object resource
variable (syntax 1) and for string variables if pType2 is not ccTAC STR (syntaxes 4 and 5). In
those cases, the function returns false. If this dictionary resource value has stack objects linked
to it or pIndex is out of range or pItemName is NULL then no dictionary item will be inserted and
the function will return false.

Additional Information
TAC Object Types

ccDictionary: :dNumSameItems

CCULONG dNumSameItems (ccSTR pItemName)

Input
pltemName The dictionary keyword (name) to search for (should not be NULL).

Return
Returns the number of dictionary items having the same specified dictionary keyword in this
dictionary resource value.

Action
Gets the number of dictionary items having the same specified (pItemName) dictionary keyword
in the dictionary resource value of this resource interface.

If pItemName is NULL then the function will return 0.

ccDictionary: :dPutDictFlags

void dPutDictFlags (ccULONG pFlags, ccULONG pMask = OxO000FFFF)

Input

pFlags The binary flags to set or clear.

pMask Indicates which flags in pFlags will take effect.
Action

Sets or clears the programmer-defined binary flags (pFlags) associated with the dictionary
resource value of this resource interface based on the corresponding set flags in a mask (pMask).
The programmer can set flags only in the least significant 16 bits of pFlags; flags set in the most
significant 16 bits of pFlags are ignored (they are used internally by ETAC). Those
programmer-defined flags are for programmer use for any purpose; the ETAC interpreter ignores
those flags. pMask determines which flags in pFlags will take effect. A set flag (1) in pMask
indicates that the corresponding flag (whether it is set or clear) in pFlags will take effect. A
clear flag (0) in pMask indicates that the corresponding flag setting in the dictionary resource
value will remain unchanged (the corresponding flag in pFlags is ignored). For example, if
pMask is 0x00000000 then this function will have no effect; if pMask is 0Ox0000FFFF (the
default) then all 16 programmer-defined flags in pFlags will take effect (the programmer-
defined flags in the dictionary resource value will be modified to those in pFlags).

Additional Information

Dictionary Binary Flags - dGetDictFlags

ccDictionary: :dPutItemObj

ccBOOL dPutItemOb;j (ccULONG pIndex,
ccBOOL dPutItemOb;j (ccULONG pIndex,
cc _tac type pTypel ccTAC INT)
ccBOOL dPutItemOb;j (ccULONG pIndex,
ccBOOL dPutItemObj (ccULONG pIndex,
cc _tac type pType2 = ccTAC STR)
ccBOOL dPutItemOb;j (ccULONG pIndex,
cc _tac type pType2 ccTAC STR)
ccBOOL dPutItemOb;j (ccULONG pIndex,
cc _tac type pType3 = ccTAC SEQ)
ccBOOL dPutItemOb;j (ccULONG pIndex,
ccBOOL dPutItemObj (ccULONG pIndex,

ccStackObj *pStackObj)
ccINT pInteger,

ccDEC pDecimal)
ccSTR pString,

ccString *pString,

ccSequence *pSequence,

ccMemoryBlock *pMemory)

ccDictionary *pDictionary)

Input

pStackOb] Contains a stack object of a new dictionary item to put at the specified index
(should not be NULL).

pInteger Contains an integer value to put into the dictionary item at the specified index.

pDecimal Contains a decimal value to put into the dictionary item at the specified index.

pString Contains a string value to put into the dictionary item at the specified index, or
NULL (only if pType2 is ccTAC STR).

pSequence Contains a sequence resource value to put into the dictionary item at the
specified index, or NULL.

pMemory Contains a memory resource value to put into the dictionary item at the
specified index, or NULL.

pDictionary Contains a dictionary resource value to put into the dictionary item at the
specified index, or NULL.

pTypel Type of stack object of the dictionary item to be put at the specified index.
Possible values are: ccTAC INT, ccTAC CMDI, ccTAC OPRI, ccTAC MARK,
ccTAC NULL, ccTAC EXE.

pType2 Type of stack object of the dictionary item to be put at the specified index.
Possible values are: ccTAC STR, ccTAC CMD, ccTAC OPR.

pType3 Type of stack object of the dictionary item to be put at the specified index.
Possible values are: ccTAC SEQ, ccTAC PROC.

pIndex Zero-based index at which the specified item is to be put, or ccLAST IDX.

Return

Returns true if the function succeeded, otherwise returns false.

Action

Each function replaces the stack object of a dictionary item of the dictionary resource value of
this resource interface at an index (pIndex) with a stack object containing the specified item. A
value of ccLAST IDX for pIndex indicates the last (topmost) dictionary item. For input resource
variables, a copy of the resource object of that variable is put. For input resource variables that
contain NULL, the inserted stack object will have an empty resource value, except for a stack
object resource variable (syntax 1) and for string variables if pType?2 is not ccTAC STR
(syntaxes 4 and 5). In those cases, the function returns false. If pIndex is out of range then
the function returns false.

Additional Information
TAC Object Types

ccDictionary: :dSetDictName

void dSetDictName (ccSTR pName)

Input
pName Contains the name to set for this dictionary resource value, or NULL.

Action
Sets the name (pName) of the dictionary resource value of this resource interface. 1f pName is
NULL, an empty name is set.

ccDictionary: :dSetItemName

ccBOOL dSetItemName (ccSTR pName, ccULONG pIndex)

Input

pName Contains the name to set for the dictionary keyword of the specified dictionary
item (should not be NULL).

pIndex The zero-based index of the dictionary item to modify, or ccLAST IDX.

Return

Returns true if the function succeeded, otherwise returns false.

Action

Replaces the name (pName) of the dictionary keyword of the dictionary item at an index (pIndex)
of the dictionary resource value of this resource interface. A value of ccLAST IDX for pIndex
indicates the last (topmost) dictionary item in this dictionary resource value. If pName is NULL,
or pIndex is out of range, then the function returns false.

ccDictionary::dSize

ccULONG dSize ()

Return
The number of dictionary items in the dictionary resource value contained in this resource
interface.

Action
Gets the number of dictionary items in the dictionary resource value contained in this resource
interface.

3.11 ccDataObject Class

The data object resource interface is an emulation based on the sequence resource interface, and
has no member functions as such. It is important to note that the details of the emulation can be
different in future versions of ETAC without notice. The C++ programmer must not in any way
directly use the sequence resource interface member functions for a data object resource
interface.

A data object can be constructed via helper functions designed for that purpose. A data object
contains a data dictionary, which can be assessed as a regular dictionary via a dictionary
resource interface. The data dictionary of a data object resource interface can be accessed via a
helper function.

The helper functions for a data object resource interface are described in 3.12.1 Data Object
Helpers.

The cchataObject class is defined as a typedef in the file ExternTACLib_n.h which must be
included in C++ source code for creating external TAC libraries. The pre-processor definition
ccTAC_ VRSN (defined in ExternTACLib_n.h) defines the number n which indicates the version of
the ccDataObject class in use. That number is the same as the n in AppETAC_n.h which must be
included in C++ source code for application programs. The inclusion of those two files ensures
that the appropriate version of the ccDataObject class is created by the ETAC interpreter.

3.12 Helper Functions

Helper functions are implemented as C++ source code in the file ETIExtraFnts.cpp. The
ETIExtraFnts.cpp file is included (via the pre-processor #include directive) at a place in the C++
source code where functions are defined. To include only the required function definitions
existing in the file, the C++ programmer defines the appropriate pre-processor definition for the
required functions before the file #include directive. If no such pre-processor definitions are
made, all the functions in the file are included. The said pre-processor definition for each helper
function is specified under the “Inclusion Definition” heading of the function description block
later in this document.

If no helper functions are used in the C++ source file, ETIExtraFnts.cpp need not be included.

3.12.1 Data Object Helpers

The following list is a summary of the helper functions of the ccDataObject class.

ccDataObject Class Function Summary

Function Description
ccMakeDataObj Associates a data object with a data dictionary.
ccGetDataDict Obtains the data dictionary of a data object.

Data Object Examples

The following example illustrates how to create a data object. Error checking code and other
irrelevant items are not shown in the illustration.

#define ccF_MAKE_DATA OBJ
#include

ccRTNCODE; /* Declare the return code variable. */

ccNEW_DATAOBIJECT (DataObj); /* The data object to create. */

ccNEW_DICTIONARY (DatabDict); /* The data dictionary of the created data object. */
bool Rtn;

/* Allocate members for the data object via the data dictionary. */
Rtn = DataDict->dNewItem(, L); assert(Rtn);
Rtn = DataDict->dNewItem(,); assert(Rtn);

/* Create the data object from the data dictionary. */
Rtn = ccMakeDataObj(DataObj, DataDict); assert(Rtn);

/* Allocate more members for the data object if desired. */
Rtn = DataDict->dNewItem(,); assert(Rtn);

ccPUSH((DataObj)); /* Push the data object onto the object stack. */

CCEXITLBL:
/* Release resource interfaces. */
ccFREE(DataDict);
ccFREE(DataObj); ¢

The following example illustrates how to obtain a data object from the object stack. Error
checking code and other irrelevant items are not shown in the illustration.

#define ccF_GET_DATA DICT
#include

ccRTNCODE; /* Declare the return code variable. */

ccNEW_DATAOBJECT (DataObj); /* The data object from the object stack. */
ccNEW_DICTIONARY (DataDict); /* The data dictionary of the obtained data object. */
bool Rtn;

/* Pull the data object from the object stack. */
ccPULL ((Data0Obj));

/* Obtain the data dictionary from the data object. */
cCcCALL (ccGetDataDict(DataDict, DataObj));

/* Allocate more members for the data object if desired. */

Rtn = DataDict->dNewItem(,); assert(Rtn);
CCEXITLBL:

/* Release resource interfaces. */

ccFREE(DataDict);

ccFREE(DataObj); ¢

The definitions of the ccDataObject class helper functions are as follows.

ccMakeDataObj

ccBOOL ccMakeDataObj (ccDataObject *pDataObj, ccDictionary *pDataDict)

Input

pDatalbj Contains an allocated empty data object resource interface (must not be NULL).

pDataDict Contains an initialised dictionary resource interface as the data dictionary for
pDatalbj (must not be NULL).

Output

pDatalbj Receives a copy of the dictionary resource value contained in pDataDict.

pDataDict Receives an internal name identifying the dictionary resource value of
pDataDict as a data dictionary.

Return

Returns true if the function succeeded, otherwise returns false.

Inclusion Definition

#define ccF MAKE DATA OBJ

Inclusions Required
ETIExtraFnts.cpp

Action

Initialises a data object resource interface (pDataObj) with a copy of the dictionary resource
value contained in pDataDict as a data dictionary. pDataObj and pDataDict must both point
to a pre-allocated resource interface, otherwise the consequence is unpredictable. The resource
interface of pDataObj must be empty; the resource interface of pDataDict can contain

dictionary items before this function is called. Further dictionary items can be allocated to
pDataDict after this function returns.

Note that both the resource interfaces of pDataOb’j and pDataDict will have a managed
reference to the same data dictionary resource value after this function returns to the caller.

ccGetDataDict

cc _rtn code ccGetDataDict (ccDictionary *&pDataDict, ccDataObject
*pDataObj)

Input
pDatalbj Contains an initialised data object resource interface (must not be NULL).

Output
pDataDict Receives a copy of the data dictionary of pDataObj.

Return
Return code indicating the success or otherwise of the function.

Inclusion Definition
#define ccF GET DATA DICT

Inclusions Required
ETIExtraFnts.cpp

Action

A copy of the data dictionary contained in pDataOb7j is put into the resource interface of
pDataDict. pDataOb’j must contain a properly initialised data object (via ccMakeDataObj ())
before this function is called. Further dictionary items can be allocated to pDataDict after this
function returns.

Note that both the resource interfaces of pDataObj and pDataDict will have a managed
reference to the same data dictionary resource value after this function returns to the caller.

Other Information
ccMakeDataObj

3.13 External TAC Library Functions

An external TAC library is designed by a C++ programmer, therefore all exportable functions
within it are defined by the programmer. Those exportable functions, however, need to satisfy
certain requirements so that the ETAC interpreter can call them. The first function that the ETAC
interpreter calls after loading an external TAC library (typically via @ImportLib) is the mapping
function, tacGetCCMapping (). This is a required function that supplies important information
to the ETAC interpreter. The other functions that the C++ programmer defines are the E7L
functions. These functions are optional, but it would be pointless not to have at least one ETL
function.

ExternTACLib_n.h, where n is the version number of the ETAC interface and resource interfaces in
use, must be included in C++ source code for creating external TAC libraries.

3.13.1 Mapping Function

The mapping function, tacGetCCMapping (), is called by the ETAC interpreter via the name
“tacGetCCMapping” exported by the external TAC library (the ETAC interpreter uses the
Windows® GetProcAddress () function to call the mapping function by the said name).

The designer of an external TAC library must create a unique comop name for each ETL function
in that library. Each comop name must satisfy the syntax of a variable identifier. A comop name
for use as an operator must be prefixed with an ampersand character (&). An ETL function is
identified by its comop name in ETAC code. In addition, the designer can optionally classify the
comop names into arbitrary (possibly overlapping) groups for the convenience of the ETAC
programmer. The name of each group must also satisfy the syntax of a variable identifier. Also,
each ETL function must correspond to a unique ordinal number (as defined for an exported DLL
function).

An ETAC programmer can specify one or more groups (or “classes”) to load from the external
TAC library. The mapping function satisfies that request by supplying the caller with a list of
comop names matching the union of the requested classes, and also supplies a corresponding list
of ordinal numbers for those comop names. A name based on the comop name is used by an
ETAC programmer to identify the corresponding ETL function, and the corresponding ordinal
number is used by the ETAC interpreter to execute the ETL function.

tacGetCCMapping

extern "C" long ccTACAPI tacGetCCMapping (ccSTR *&pComopNamelist,
CCULONG *&pComopOrdList, ccSTR *pClasses, void *pReservedl,
void *pReserved2, void *pReserved3)

Input

pClasses A pointer to a NULL terminated string list containing classification names of
the ETL functions requested by the caller, or NULL.

Output

pComopNamelList A NULL terminated string list of comop names for the ETL functions
indicated by pClasses requested by the caller.

pComopOrdList A zero-terminated integer list of ordinal numbers of the ETL functions
corresponding the comop names of pComopNameList.

Return
Returns the version of the ETAC interface and resource interfaces used by the external TAC
library (should be the value of ccTAC VRSN).

Inclusions Required

ExternTACLib_n.h

Action

This is a PROGRAMMER-DEFINED function that is called by the ETAC interpreter after
loading an external TAC library. The ETAC interpreter calls this function from the load lib
command. One of the arguments of load 1ib is a class list which is passed to this function in
pClasses. The class list allows the load 1lib caller to use only the specified subsets of the
ETL functions by listing the class names of those ETL functions. If a class list is not supplied, all
the ETL functions are loaded into the ETAC interpreter.

pComopNameList is a NULL terminated string (ccSTR) array defined by the designer of the
external TAC library to contain comop names matching the union of the classes specified in
pClasses. If pClasses is NULL, pComopNameList must contain all the comop names
corresponding to the ETL functions.

pComopOrdList is a zero-terminated unsigned long (ccULONG) array defined by the designer of
the external TAC library to contain the ordinal numbers corresponding to the names in
pComopNameList.

pReservedl, pReserved?2, and pReserved3 are for future use and should be ignored.

3.13.2 ETL Functions

The main purpose of creating an external TAC library is to provide ETL functions for use in
ETAC code. ETL functions are implemented in C++ code, and called by the ETAC interpreter via
its DLL ordinal number (the ETAC interpreter uses the Windows® GetProcAddress () function
to call the ETL function by the said ordinal number).

In the following boxed description, “ETL Function” represents the programmer-defined name of
an ETL function.

ETL Function

extern "C" cc _rtn code ccTACAPI ETL_Function(ccTAC *pTAC)

Input
PTAC A pointer to the ETAC interface in use.

Return
Return code indicating the success or otherwise of the function.

Inclusions Required

ExternTACLib_n.h

Action

This is a PROGRAMMER-DEFINED function that is called by the ETAC interpreter or C++
code. The function can be designed for use as a command (typical) or operator. 1f designed for
use as an operator, then the function is responsible for processing all the object stack arguments
and replacing the final mark 0 stack object with the result. All resource interfaces created within
the function must be released before the function ends. Return codes returned by member
functions of the ETAC interface (pTAC) or resource interfaces should be returned by this function
to be processed by the ETAC interpreter.

This function can be called directly from C++ code (perhaps from an application program or
another external TAC library). In that case, the C++ programmer uses the methods documented
by Microsoft® to call the DLL function, passing the ETAC interface to it (returned from a call to
ccGetTACIF ()), as the only argument. If this function is called from another ETL function in the
same external TAC library, then ccGetTACIF () need not be called to obtain the ETAC interface;
PTAC can be used instead.

Other Information

ccGetTACIF

3.14 AppETAC Functions

AppETAC.dIl contains a few predefined functions for use by a C++ application program. Only the
initialisation function, etacSetAppETAC (), and release function, etacRelease (), need to be
called mandatorily; the other functions can be called optionally. These functions are exported by
AppETAC.dIl with the pre-processor definition names as specified under the heading “Export Name
Definition” of each description box below. Those pre-processor names can be used with the
Windows” GetProcAddress () function if desired.

AppETAC_n.h, where n is the version number of the ETAC interface and resource interfaces in
use, must be included in C++ source code when calling the AppETAC functions.

3.14.1 Initialisation Function

This function (etacSetAppETAC ()) must be called from an application program before any
interaction with the ETAC interpreter can be made. The function sets up the ETAC interpreter as

specified in the start-up parameters passed to the function when called. The start-up parameters
are defined in aeAppETACPars_v.h, where v is the version of the start-up parameter structure, and
is the value defined for aeAEP VRSN within the file. aeAppETACPars_v.h is automatically

included by AppETAC_n.h.

The table below describes the details of the start-up parameters. Some of these start-up
parameters are analogous to the ones for RunETAC.exe.

Parameter and Tvpe

AppETAC Start-up Parameters

Meaning

aeVrsn (aeULONG)

aeFlags (acULONG)

aeInclDirs (aeSTR)

aePPDefs (aeSTR)

aeLoaderArg (aeSTR)

aeScripts (aeSTR)

The version of the current start-up parameter structure. This value
should not be modified (default: aeAEP VRSN).

Desired start-up flags as described in the table below. The flags
can be any combination of aeNO LOADER, aeDEBUG, aeSOLO, and
aeSILENT combined using the C++ ‘BITWISE OR’ (|) operator
(default: 0x00000000).

The file path of a text file containing a list of inclusion directories
(default: NULL).

A string containing ETAC pre-processor definition names separated
by spaces (default: NULL).

The string argument for the ETAC loader script (default: NULL).

NULL terminated array of ETAC code files to execute after the
loader script has finished running (default: NULL).

aeLogFilePath (aeSTR) Path and file name of the log file (default: NULL).

aeRtnCode (aeRTNCDE)

Return code returned from execution of etacSetAppETAC ()
(default: 0).

The table below describes the details of the start-up flags specified at aeFlags in the start-up
parameters. The default is that no flags are set.

Flag
aeNO LOADER

aeDEBUG

aeSOLO

aeSILENT

AppETAC Start-up Flags

Meaning

Specifies not to search for the loader script. The default is to search
for and prompt the user for the /oader script if not found.

Runs the specified ETAC text script files (specified at: aeScripts)
and other ETAC text script in interactive debugging mode (see
etacSetDebug). Debugging is off by default.

Specifies that only one instance of AppETAC.dIl is allowed to run at a
time on the same computer. The default is to allow many instances of
AppETAC.dIl to run simultaneously.

Does not display a message box when etacProcessTACError () is
called (see etacProcessTACError). The default is to display a
message box when the said function is called.

etacSetAppETAC

extern "C" ccTAC * ccTACAPI etacSetAppETAC (acULONG pTACIFVrsn,
app_fnt pAppFnt, aecAppETACPars *pPars = NULL, void *pReservedl = NULL,
void *pReserved2 = NULL)

Input

PTACIFVersn The version of the ETAC interface to be returned (should be ccTAC VRSN).
PAppFnt A pointer to the call-back function, or NULL.

pPars Start-up parameters, or NULL.

Return

A pointer to the ETAC interface of version pTACIFVrsn.

Inclusions Required
AppETAC_n.h

Export Name Definition
aeETAC_SET APPETAC

Action

etacSetAppETAC () must only be called once from an application program to set up the ETAC
interpreter. If the application program in any way causes the command run_app fnt to be
activated, then a call-back function must be defined by the C++ programmer and passed to this
function in the pAppFnt parameter. To use the start-up parameters, a variable of type
aeAppETACPars needs to be defined, and the address of that variable passed to this function in
the pPars parameter. The function returns a pointer to the ETAC interface for interacting with
the ETAC interpreter.

The function etacRelease () must be called before the main window of the application program
is destroyed.

pReservedl and pReserved?2 are for future use and should be ignored.

Related Information
etacRelease

3.14.2 Auxiliary Functions

AppETAC.dIl contains some auxiliary functions that can optionally be called from the application
program.

etacProcessTACError

extern "C" void ccTACAPI etacProcessTACError (cc rtn code pErrCode)

Input
pErrCode The return code from a function with a return type of cc_rtn code.

Inclusions Required
AppETAC_n.h

Export Name Definition
aeETAC_PROC TAC ERR

Action

Processes a TAC error code (pErrCode) by converting it to a text message, logging the message
to a file, and (if aeSILENT was not specified in the start-up flags) displaying it on the screen.
pErrCode contains an error code as returned from functions with a return type of cc_rtn code.
If no such processing is desired, then this function should not be called. The consequence is
undefined if the value of pErrCode is ccTAC RTN SUCCESS (or zero).

Other Information

ccERROR

etacRelease

extern "C" void ccTACAPI etacRelease ()

Inclusions Required

AppETAC_n.h

Export Name Definition

aeETAC RELEASE

Action
Releases the AppETAC.dIl resources. This function must be called before the main window of the
application program is destroyed.

etacSetDebug

extern "C" void ccTACAPI etacSetDebug (bool pOn = true)

Input

POn Determines whether to set the debug state on (true) or off (false).

Inclusions Required
AppETAC_n.h

Export Name Definition

aeETAC_SET DEBUG

Action

Sets the debug state to on (pOn is true) or off (pOn is false). When the debug state is on, the
debug window and the trace window appear so that the programmer can trace and debug E7AC
text script. When the debug state is off, the debug window and the trace window do not appear.
The default setting of the debug state is determined by the start-up flag aeDEBUG.

This function must not be called while an ETAC session is active (the consequence is undefined
otherwise). Calls to this function are not nested.

Other Information

AppETAC Start-up Flags

etacShowAbout

extern "C" void ccTACAPI etacShowAbout ()

Inclusions Required

AppETAC_n.h

Export Name Definition

aeETAC SHOW ABOUT

Action
Shows the AppETAC about box.

3.15 Application Program Call-back Function

An application program can optionally include a single call-back function, which is called via the
run_app_fnt command from ETAC code. The call-back function is designed by the C++
programmer to perform various operations as desired.

AppETAC_n.h, where n is the version number of the ETAC interface and resource interfaces in
use, must be included in C++ source code when defining the call-back function.

3.15.1 Call-back Function

In the following boxed description, “Call-back Function” represents the programmer-defined
name of the call-back function.

Call-backR Function

extern "C" cc rtn code ccTACAPI Call-back Function (ccTAC *pTAC)

Input
PTAC A pointer to the ETAC interface in use.

Return
Return code indicating the success or otherwise of the function.

Inclusions Required
AppETAC_n.h

Action

This is a PROGRAMMER-DEFINED function that is called by the ETAC interpreter via the
run_app_fnt command in ETAC code. The proper arguments for this function are expected to
exist on the object stack. This function can return stack objects on the object stack for the
run_app_fnt caller. Return codes returned by member functions of the ETAC interface (pTAC)
or resource interfaces should be returned as the return value of this function to be processed by
the ETAC interpreter.

The first stack object argument for this function is typically a command number (an integer stack
object) defined by the designer of this function. The command number is only a convention used
by the programmer to distinguish among different operations of this function. The remaining
stack object arguments (if any) are designed by the programmer to be appropriate for the value of
that command number.

Appendix A

Compatibility Issues

Al Introduction

The ETAC interface and resource interfaces use the virtual table produced by the C++ compiler
to communicate with the ETAC interpreter. A virtual table is hidden from the C++ programmer,
and typically consists of an array of pointers to the virtual function definitions of a C++ class.
An instance of a C++ class has internal access to the virtual table, by which means it calls the
appropriate virtual functions. Since virtual tables are hidden, they do not form part of the
specification of the C++ language, thus the order of the pointers within a virtual table is
determined by the C++ compiler implementer. In addition, a virtual table can be implemented
either at the beginning of a class instance or at the end. As a result, the object code produced by
C++ compilers designed by different vendors may not be inter-compatible with respect to calling
virtual functions. For example, if a virtual function of a class instance is called from code
compiled by a C++ compiler designed by a different vendor, the order of the pointers within the
virtual table of that class instance may be different than the order produced by the compiler of
that other vendor. The result is that the wrong function may be called by that other code.

The ETAC interpreter was compiled with MSVC 7.1 (Microsoft® Visual C++® compiler version
7.1). Any C++ code that needs to communicate with the ETAC interpreter must be compatible
with MSVC 7.1 with respect to the virtual tables and function calling conventions. The ETAC
interpreter uses the native C calling convention known as « cdecl) within MSVC when
communicating with C++ code. All MSVC compilers after version 7.1 are expected to be
compatible with version 7.1 with respect to the ordering of the pointers within the virtual table of
C++ classes. C++ compilers designed by other vendors may produce a different ordering of the
pointers within the virtual table. The easiest solution to the problem is to obtain a C++ compiler
compatible with MSVC 7.1, such as the one provided by Microsoft®™ for free (subject to terms and
conditions). If that is not a viable solution, then the workaround described in the following
section can be used.

A2 Workaround for Non-MSVC Compilers

The first requirement for the workaround is that the non-MSVC compiler must produce the virtual
table at the beginning of a class instance. If the non-MSVC compiler produces the virtual table in
any other position, then no workaround is possible. The workaround consists of attempting to
coerce the non-MSVC compiler to produce the function pointers in the correct order within the
virtual table of the ETAC interface and each resource interface. This may be achieved by simply
making a copy of ExternTACLib_n.h, and reordering the virtual function declarations such that the
order of the virtual function pointers in the produced virtual table is identical to the order of the
virtual function pointers expected by the said interfaces (this reordering will need to be done
whenever a new ExternTACLib_n.h is released). The C++ programmer using a non-MSVC
compiler needs to know the order of the virtual function pointers produced by that compiler.
Typically, the order of the produced function pointers are the same as the order of the virtual
function declarations presented in the class definition. The compatibility issue arises because the
MSVC compiler does not produce the function pointers in the order presented in the class
definition for overloaded virtual functions, but produces those pointers in reverse order — non-
overloaded function pointers are produced in the given order.

The following tables show the order of the function pointers in the virtual table of the ETAC
interface and of each resource interface. Element indexes for each virtual table are indicated
within square brackets. Version 1 of the ETAC interface has been redefined from previous.

Virtual Tables for ETAC Interfaces

ccTAC (version 1)

ccCountToMark (unsigned long)

ccDeleteDict (unsigned long, unsigned long)

ccExecCmd (unsigned long)

ccExecCmd (unsigned short const *)

ccExecETAC (class ccMemoryBlock *)

ccExecETAC (unsigned short const *)

ccGetDict (class ccDictionary * &, unsigned short const *, int)
ccGetDictOfItem(class ccDictionary * &, unsigned short const *, int)
ccGetObjType (unsigned char &)

ccGetTACIF (struct HINSTANCE *, long)

ccNew (class ccDictionary * &)

ccNew (class ccMemoryBlock * &)

ccNew (class ccSequence * &)

ccNew (class ccStackObj * &)

ccNew (class ccString * &)

ccPop (unsigned long)

ccPull (class ccDictionary * &, bool)
ccbPull
ccPull
ccPull

ccPull

class ccMemoryBlock * &)

class ccSequence * &, unsigned char)
class ccStackObj * &)

class ccString * &, unsigned char)
ccPull (double &)

ccPull (long &, unsigned char)

ccPush (class ccDictionary *, bool)
ccPush (class ccMemoryBlock *)
ccPush (class ccSequence *, unsigned char)
class ccStackObj *)

ccPush (class ccString *, unsigned char)
ccPush (double)

ccPush (long, unsigned char)

(
(
(
(
(
(
ccPush (unsigned short const *, unsigned char)
(
(
(
ccPush (
(
(

ccRelease(class ccDictionary * &)
ccRelease (class ccMemoryBlock * &)
ccRelease (class ccSequence * &)
class ccStackObj * &)

class ccString * &)

ccRelease

W W W W wWw w NN DD DD DN RPEPRERERERPRE R RARER R O 0O 0O WD R O
g > W N P O W 0O J o U b W N EPE O W 0 J o U b W N EFP O« = = = =

— — —/ —/ —/ /@ /@ /@ /@ /@ ™~/ —/@ ™~/ ™~/ /@ /& /@ ™~/ ™~/ /@ /@ /@ ™~/ /@ ™~/ /& /& /@ /@ /& ™~—/@ /@ /& /@ ™—/@ ™

(
(
(
(

ccRelease

ccDictionary

[0] dCopyDict(class ccDictionary * &)

[1] dDeleteAll (void)

[2] dDeleteltem (unsigned long)

[3] dDuplicateDict (class ccDictionary * &)
[4]

dExecItemObj (unsigned long, class ccTAC *)

dFindItem (unsigned short const *, int)

dGetDictFlags (void)

dGetDictName (class ccString * &)

dGetItemName (class ccString * &, unsigned long)

dGetItemObj (unsigned long, class ccDictionary * &)

dGetItemObj (unsigned long, class ccMemoryBlock * &)

dGetItemObj (unsigned long, class ccSequence * &, unsigned char)
dGetItemObj (unsigned long, class ccStackObj * &)

dGetItemObj (unsigned long, class ccString * &, unsigned char)

(

dGetItemObj (unsigned long, long &, unsigned char)
dGetItemType (unsigned char &, unsigned long)

e e o S e e e SR Vo B N e N &

]
]
]
]
] dGetItemObj (unsigned long, double &)
]
]
]

dNewItem (unsigned short const *, unsigned short const *, unsigned
char, unsigned long)

[18] dNewItem(unsigned short const *, class ccDictionary *, unsigned long)

[19] dNewItem(unsigned short const *, class ccMemoryBlock *, unsigned
long)

[20] dNewItem(unsigned short const *, class ccSequence *, unsigned char,
unsigned long)

[21] dNewItem(unsigned short const *, class ccStackObj *, unsigned long)

[22] dNewItem(unsigned short const *, class ccString *, unsigned char,
unsigned long)

dNewItem (unsigned short const *, double, unsigned long)

dNewItem (unsigned short const *, long, unsigned char, unsigned long)
dNumSameItems (unsigned short const *)

dPutDictFlags (unsigned long, unsigned long)

dPutItemObj (unsigned long, unsigned short const *, unsigned char)
dPutItemObj (unsigned long, class ccDictionary *)

dPutItemObj (unsigned long, class ccMemoryBlock *)

dPutItemOb]
dPutItemObj
dPutItemObj (unsigned long, class ccString *, unsigned char)

(
(
(unsigned long, class ccSequence *, unsigned char)
(unsigned long, class ccStackObj *)

(

dPutItemObj (unsigned long, double)

dPutItemObj (unsigned long, long, unsigned char)

dSetDictName (unsigned short const *)

dSetItemName (unsigned short const *, unsigned long)

dSize (void)

W W W W W W W W N DD DD DD DN
~N o O b W NP O W oo Jd o O bW

ccSequence and ccDataObject

sAppendSeqg(class ccSequence *, bool)
sCopySeqg(class ccSequence * &)

sDeleteAll (void)

sDeleteElms (unsigned long, unsigned long)
sDuplicateSeqg(class ccSequence * &)

sGet (class ccDictionary * &, unsigned long)
sGet (class ccMemoryBlock * &, unsigned long)

~ o O b W DN P O
L e e e e e

sGet (class ccSequence * &, unsigned char, unsigned long)

[8] sGet(class ccStackObj * &, unsigned long)

[9] sGet(class ccString * &, unsigned char, unsigned long)
[10] sGet (double &, unsigned long)

[11] sGet(long &, unsigned char, unsigned long)

[12] sGetElmType (unsigned char &, unsigned long)

[13] sInsert (unsigned short const *, unsigned long, unsigned char)
[14] sInsert(class ccDictionary *, unsigned long)

[15] sInsert(class ccMemoryBlock *, unsigned long)

[16] sInsert(class ccSequence *, unsigned long, unsigned char)
[17] sInsert(class ccStackObj *, unsigned long)

[18] sInsert(class ccString *, unsigned long, unsigned char)
[19] sInsert (double, unsigned long)

[20] sInsert(long, unsigned long, unsigned char)

[21] sPut (unsigned short const *, unsigned char, unsigned long)
[22] sPut(class ccDictionary *, unsigned long)

[23] sPut(class ccMemoryBlock *, unsigned long)

[24] sPut(class ccSequence *, unsigned char, unsigned long)
[25] sPut(class ccStackObj *, unsigned long)

[26] sPut(class ccString *, unsigned char, unsigned long)

[27] sPut (double, unsigned long)

[28] sPut(long, unsigned char, unsigned long)

[29] sSize(void)

ccMemoryBlock

[0] mbAllocate (unsigned long)

[1] mbAppendMem(class ccMemoryBlock *)

[2] mbApplyBOM (bool)

[3] mbCopyMem(class ccMemoryBlock * &)

[4] mbCvtDataTo (long)

[5] mbDuplicateMem(class ccMemoryBlock * &)

[6] mbExport(class ccString * &)

[7] mbExport (void *, unsigned long)

[8] mbGetDataPtr (void)

[9] mbGetDataSize (void)

[10] mbGetErrCode (void)

[11] mbGetMemSize (void)

[12] mbImport (unsigned short const *, unsigned long, unsigned long)
[13] mbImport(class ccString *)

[14] mbInsert (class ccMemoryBlock *, unsigned long, unsigned long,

unsigned long)
mbLoad (void *, unsigned long)
mbReadWholeFile (unsigned short const *, unsigned long)
mbReadWholeFile (class ccString *, unsigned long)

mbRepDstPath (class ccString * &, unsigned short const *)

[15]

[16]

[17]

[18] mbRepDataForm(long, unsigned long)

[19]

[20] mbRepDstPath(class ccString * &, class ccString *)
[21]

mbRepSrcPath (class ccString * &, unsigned short const *)

[22] mbRepSrcPath(class ccString * &, class ccString *)

[23] mbReserveExtraMem (unsigned long)

[24] mbSet (unsigned char)

[25] mbSetDataSize (unsigned long)

[26] mbWriteWholeFile (unsigned short const *, bool, unsigned long)

[27] mbWriteWholeFile(class ccString *, bool, unsigned long)

ccString

[0] strAppend(unsigned short const *, unsigned long, unsigned long)

[1] strAppend(unsigned long)

[2] strAppend(class ccString *, unsigned long, unsigned long)

[3] strAssign(unsigned short const *, unsigned long, unsigned long)

[4] strAssign(class ccString *, unsigned long, unsigned long)

[5] strDeleteStr (unsigned long, unsigned long)

[6] strFindAndRepStr (unsigned short const *, unsigned short const *)

[7] strGetChar (long)

[8] strGetStrBuff (unsigned long)

[9] strGetStrPtr (void)

[10] strInsertStr (unsigned long, unsigned short const *, unsigned long,
unsigned long)

[11] strLength (void)

[12] strPutChar (unsigned long, long)

[13] strReleaseStrBuff (unsigned long)

[14] strStrip(unsigned long, unsigned short const *)

[15] strUCharCount (void)

[16] strWCharCount (unsigned long &, long, long)

ccStackObj

[0] soCopyObj(class ccStackObj * &)
[1] soDuplicateObj(class ccStackObj * &)

A3 Possible Future Compatibility Resolution

A future version of AppETAC.dll may be released with a linkable static library (for example,
ETACIFace_n.lib) for linking with a main application program or an external TAC library. The
static library would be in COFF (Common Object File Format) format, and would contain pseudo
ETAC interface and resource interface C++ class definitions to automatically implement access to
the real ETAC interface and resource interfaces. Such a system would alleviate the requirement
of a workaround for non-MSVC compilers. Appropriate C++ header files would also be included
with the static library. However, there are currently no plans to release such a static library.

Bibliography

The Official ETAC Programming Language Copyright © Victor Vella (2020).

Glossary

A

activate
a) When referring to a script token that creates a stack object, the script token is converted
to a stack object by the TAC processor and then the object’s nominal action is performed.

b) When referring to a script token that does not create a stack object, an appropriate action
is performed depending on the type of script token.

¢) When referring to a stack object, the stack object is temporarily copied by the TAC
processor and then the copied object’s current action is performed.

B

binary interpreter
Part of an ETAC interpreter that processes TAC binary instructions.

boolean value
An integer interpreted as consisting of 32 binary flags, or a ‘true’ (-1) or ‘false’ (0) value.
The true value is represented by having all the 32 binary flags set (achieved by the value -1
based on a two’s complement representation of integers). The false value is represented by
having all the 32 binary flags unset. A boolean value is typically assigned by a hexadecimal
number if used as binary flags, or by the true or false intrinsic commands if used as a
logical condition.

C

call-back function (applies to an application program)
The C++ function (defined in an application program) that is executed when the
run_app_f£nt command is activated. There can be only one call-back function for each
main ETAC session evoked by an application program.

command
A script token having the syntax of a comop identifier. A command can be in script form (eg:
«FilePathy, <tac.var, <#abc%03?, <sub:», <.xyz-3>) or instruction form (eg:
(CMD:FilePathy, «<CMD: tac.vary, <CMD: #abc%03?>, «<CMD:sub:», <CMD: . xyz—3»).

comop
A command or operator (¢command operator), or a stack object created by such a command or
operator.

comop identifier
A consecutive sequence of displayable characters with the following restrictions. The
sequence must not:

e begin with a digit or colon character,

e begin with an uppercase character and have a colon in fourth character position (eg:
(Abc:d» is invalid),

e be in the form of an integer or decimal number (eg: «23>, (+23», <2.3), «=2.3),
+2.3e5), «.3E+2>, <0.3» are invalid),

o be (+y, (=), (X, (/>, (), (=, (1=, (<, O, (K=, O=), (+H), (D,
e contain whitespaces or the characters <'>, <">, ¢,>, <;>, <[>, <I>, <{>, <}>, €O,).

A comop identifier cannot contain characters above U+00FF. Comop identifiers are case-
sensitive.

Examples of comop identifiers: <FilePathy, <tac.var, <#abc%03?, <sub:», <.xyz—=3).

compound stack object
A stack object that has a resource value. Sequence, procedure, dictionary, and memory stack
objects are compound stack objects. ETAC functions and data objects are also effectively
compound stack objects.

copy (of a stack object)
To reproduce a stack object and its embedded value into another stack object (replacing that
other stack object) such that the reproduced value and the original value are identical. The
embedded value of a stack object that has a resource value is an internal reference to that
resource value. Therefore, if such a stack object is copied, only its reference is reproduced
not its resource value. Consequently, if a stack object that has a resource value is copied to
another stack object, both objects will share the same resource value.

current action
A property of a stack object that indicates its current action when activated.

custom comop number
A positive integer identifying a particular custom module to execute for the comop. The
module exists in the standard TAC library or an external TAC library, and is implemented in
machine code not ETAC code.

D

data dictionary
The dictionary contained in a data object. That data dictionary is identified by the name
defined by the private pre-processor definition « DATA DICT>.

data form
The form of data contained in a memory stack object. The different forms of data are
specified in the table Data Form Indicators. A memory stack object contains an internal
member indicating the data form of the memory’s data.

data object
The container of dictionary used as a programmer-defined data structure consisting of stack
objects identified by name (see dictionary keyword). The dictionary itself is identified by the
name defined by the private pre-processor definition <« DATA DICT).

dictionary
A stack object having a resource value consisting of a list of internally indexed dictionary
items. The dictionary item having the highest index value in its dictionary is called the
‘topmost’ dictionary item.

dictionary item
An item in a dictionary consisting of a label having the syntax of a comop identifier and a
stack object. A dictionary item need not be unique to any dictionary; a dictionary can
contain more than one identical dictionary item, and any other dictionary can contain the
same identical item. A dictionary item within a dictionary is uniquely identified by an
internal index. When a dictionary item is added to a dictionary, the item gets the next index
value in the dictionary. The dictionary item having the highest index value in its dictionary
is called the ‘topmost’ dictionary item.

dictionary keyword
The label of a dictionary item. A dictionary keyword typically has the syntax of a comop
identifier.

dictionary stack
One of the three stacks in the ETAC interpreter that can contain only dictionaries.

duplicate (of a stack object)
To entirely reproduce a stack object and its value into another stack object (replacing that
other stack object) such that the reproduced value and the original value share no resources.
Duplication is recursive. If the stack object does not have a resource value, then the
embedded value of that stack object is reproduced.

E

embedded value (of a stack object)
The value of a stack object that is exclusively associated with that object (eg: integer,
decimal, and string stack objects have embedded values). An embedded value is not shared
with other stack objects, and can therefore be changed independently of the value of those
other objects.

ETAC code
This is ETAC script or TAC binary instructions. A file containing ETAC code typically has
an extension of etac, tac, ptac, or btac.

ETAC expression
A consecutive sequence of one or more script tokens as defined for ETAC expression in the
document ETACProgLang(Official).pdf.

ETAC function
The container of a special ETAC created procedure that creates a local dictionary then
assigns the object stack arguments to that dictionary before calling the programmer-defined
procedure. An ETAC function is typically accessed via a function command.

ETAC interface
An implementation of the definition of a particular C++ class by means of which C++ code
can initially interact with the ETAC interpreter. The term “ETAC interface” may also be used
to mean the said class itself. The C++ class name defining the ETAC interface is ccTAC.

ETAC interpreter
A computer program that processes ETAC code. An ETAC interpreter essentially consists of
a script interpreter, a binary interpreter, and a TAC processor.

ETAC packed script
ETAC text script that has been pre-processed or expanded, and then compressed. A file
containing ETAC packed script is a binary file, typically having an extension of ptac.

Note that the term “ETAC packed script” is used in the same sense as the word “code”, as in
“ETAC packed script code”.

ETAC script
This is ETAC text script or ETAC packed script. A file containing ETAC script typically has
an extension of etac, tac, or ptac.

Note that the term “ETAC script” is used in the same sense as the word “code”, as in “ETAC
script code”.

ETAC session
The period devoted to the processing of ETAC code by the TAC processor after having been
processed by the script interpreter or binary interpreter (whichever is appropriate). New
ETAC sessions can exist among a given ETAC session for different ETAC code. Therefore, a
given ETAC session can produce a new ETAC session (relating to different E7AC code from
the given ETAC session) so that when the new ETAC session ends, the given ETAC session
resumes.

ETAC statement
A consecutive sequence of one or more script tokens as defined in the document
ETACProgLang(Official).pdf for ETAC statement.

ETAC text script
ETAC program code that is in human readable and writable text form. This includes 7AC
text instructions. TAC text script containing comops in the form of variable identifiers is also
ETAC text script. A file containing ETAC text script typically has an extension of etac (or
<tac» if the file contains only 7AC text script).

Note that the term “ETAC text script” is used in the same sense as the word “code”, as in
“ETAC text script code”.

ETAC variable
A dictionary item whose dictionary keyword is in the form of a variable identifier, and whose
stack object is intended to be different at various times during an ETAC session. The ‘value’
of an ETAC variable is the value of the said stack object. The ‘variable object’ is the said
stack object itself.

ETL function
A C++ language function defined in an external TAC library to be executed from ETAC code.

external TAC library
A library of functions implemented by a programmer in the C++ programming language to
extend the functionality of the ETAC programming language. The functions exist in a
Windows® DLL (dynamic linked library), but are used as comops or ETAC functions by the
ETAC programmer.

F

function command
A command associated with a dictionary item whose stack object is an ETAC function. When
a function command is ‘called’, then its corresponding ETAC function is executed. When a
function command is ‘activated’, then its corresponding ETAC function is pushed onto the
object stack.

function member
A member whose stack object is an ETAC function.

instruction form (of a script token)
A script token in the form of a TAC text instruction.

intrinsic command
A command that is associated with a function defined internally to the ETAC interpreter, or a
stack object created by such a command. The activation of an intrinsic command does not
involve the dictionary stack (an intrinsic command is activated directly).

intrinsic operator
An operator that is associated with a function defined internally to the ETAC interpreter, or a
stack object created by such an operator. The activation of the stack object created when an
intrinsic operator is activated does not involve the dictionary stack (an intrinsic operator is
activated directly).

L

link (of a comop stack object)
A comop stack object that has an internal reference directly to its dictionary item, thus
avoiding a dictionary search for that comop.

loader script
This is an automatically loaded ETAC code file typically used to set up the ETAC
environment before the specified ETAC code files are executed. The file name for the default
loader script 1s RunETAC.btac or RunETAC.etac. The default location of the loader script is in
the System directory under the installed RunETAC directory.

local dictionary
A dictionary, typically existing temporarily, that is identified by the name defined by the pre-
processor definition « LOCAL DICT>. A local dictionary is typically used to contain the local
variables of an ETAC function.

lexical analyser
Part of the script interpreter that converts lexical tokens to logical tokens which are then
syntax checked, modified, and rearranged as necessary.

lexical parser
Part of the script interpreter that parses ETAC script into lexical tokens.

lexical token
The smallest unit of information, in the form of text characters, that can be identified by the
lexical parser.

logical token
A combination of one or more /exical tokens and internal tokens regarded as a conceptual unit
by the /exical analyser for the purpose of syntax checking and compiling a programming
language.

M

main ETAC session
An ETAC session and all other new ETAC sessions produced directly or indirectly from that
ETAC session, but not itself produced from any other ETAC session. A main ETAC session is
typically begun via the RunETAC.exe and the AppETAC.dIl computer programs.

managed reference
An internal reference to a resource value using a reference counting system. Circular
references are not supported.

member (of a data object)
A dictionary item of the dictionary contained in a data object.

member variable (of a data object)
A member of a data object that is an ETAC variable (or rarely a TAC variable).

N

nominal action (of a TAC object)
The default action of a TAC object.

O

object stack
One of the three stacks in the ETAC interpreter that can contain any type of 74C object. This
is the main stack used by ETAC code.

operator
A script token containing the syntax of a comop identifier. An operator could be in script
form qualified by a preceding <& (eg: <&§AddVect), <&tac.var, (&#abc%03?), <&gadd:»,
<& .xyz-3») or instruction form (eg: <OPR:AddVect)y, <OPR:tac.var», <OPR: #abc%03?»,
«OPR:add:», <OPR:.xyz—-3>). An operator is used in an operator expression.

operator expression
A consecutive sequence of script tokens involving an operator and its operands. There are
two forms of operator expressions. One, where the operands are delimited by parentheses,
and two, where the operands are delimited by the start op and end op commands. The
operator of an operator expression can exist anywhere within its operand’s delimiters.

Typically, when an operator expression is activated, its operands get activated first leaving
the operator arguments on the object stack, then the operator gets activated and processes
those arguments, returning the resultant stack object on the object stack. For example, the
operator expression < (3 + 4 5)» will return 12 on the object stack. That operator
expression can be written as: <(+ 3 4 5)>,«(3 4 5 +)»,«(3 4 + 5)»,<end op 3 4
&add 5 start opy, «<start op; 5; 4; &add; 3; end op;>. Note that the operator
expressions in all but the last example are activated from right to left; the operator
expression of the last example is activated from left to right.

An operator expression can contain nested operator expressions as some or all of its
operands, but each operator expression must contain exactly one operator at the top level.

operator stack
One of the three stacks in the ETAC interpreter that can contain only operator stack objects.

P

procedure
A special sequence, which, when activated, the elements of that sequence get activated. The
elements of a procedure are typically command stack objects.

procedure expression
A group of script tokens that creates a procedure when activated.

R

resource interface
An implementation of the definition of certain C++ classes by means of which C++ code can
interact with non-numerical TAC objects. The term “resource interface” may also be used to
mean one of the said classes themselves. The C++ class names defining resource interfaces
are: ccDictionary, ccSequence, ccDataObject, ccMemoryBlock, ccString, and
ccStackObj.

resource object
The managed reference part of a resource interface understood as if it were a stack object.

resource value
The value of a stack object that can be shared with other stack objects of the same type —
sequence, procedure, dictionary, and memory stack objects have sharable resource values. A
resource value is internally referenced by the stack object; that reference itself is the object’s
embedded value (the reference itself is not available to the programmer, only the value being
referenced, the resource value, is available).

resource variable
A variable that effectively points to an instance of a resource interface.

S

script form (of a script token)
A script token not written in the form of a TAC text instruction. This is a more natural and
intuitive style of expressing script tokens.

script interpreter
The part of the ETAC interpreter that processes ETAC script. The script interpreter consists
of a lexical parser, a script pre-processor, and a lexical analyser.

script pre-processor
The script pre-processor is that part of the script interpreter that is responsible for pre-
processing ETAC text script.

script token
A consecutive sequence of one or more /exical tokens regarded as a unit for the purpose of
defining the syntax and semantics of the ETAC programming language.

sequence
A stack object having a resource value consisting of any number (including zero) of indexed
stack objects understood as a unit. The indexed stack objects are the ‘elements’ of the
sequence. The first element begins at index one, the second element is at index two, and so
on. The number of elements in a given sequence is variable but limited by available memory.
The elements of a sequence can be any type of stack objects, including sequences.

sequence expression
A group of script tokens that creates a sequence when activated.

stack object
Any one of a number of certain groups of 74C objects.

standard TAC library
This is a library of custom comops that are implemented internally to the ETAC interpreter.
Each comop has a unique custom comop number. Custom comops must be loaded via the
execute custom 7AC text instruction or the custom command before they can be activated
(this is done automatically by the loader script).

T

TAC binary instruction
A binary form of a TAC text instruction. TAC binary instructions exist in binary files. Any
ETAC code can be compiled into TAC binary instructions by the ETAC Compiler program. A
file containing TAC binary instructions typically has an extension of btac.

TAC object
An entity that has the capability of existing on a TAC stack, and consists of a type and
corresponding value along with an indicator of some suitable action to perform.

TAC processor
Part of the ETAC interpreter that creates a TAC object from each logical token passed to it
then activates the TAC object according to its type.

TAC stack
An object stack, dictionary stack, or operator stack.

TAC text instruction
A human readable text instruction of the form «type : argument> where type is any one of:
INT, DEC, STR, LBC, LBO, CMD, OPR, MRK, MEM, NUL, or EXE, and argument is an appropriate
argument for type. TAC text instructions may exist in ETAC text script files or in files
containing only TAC text instructions. The ETAC Compiler program can compile ETAC code
to TAC text instructions. A file containing TAC text instructions alone typically has an
extension of tac.

TAC text script
TAC program code that is in human readable and writable text form. This includes TAC text
instructions. TAC text script does not contain ETAC program code (ETAC expressions or
ETAC statements other than assignment or allocation statements). A file containing TAC text
script typically has an extension of tac.

Note that the term “TAC text script” is used in the same sense as the word “code”, as in “TAC
text script code”.

TAC variable
A dictionary item whose dictionary keyword has the syntax of a comop identifier, and whose
stack object is intended to be different at various times during an ETAC session. The ‘value’
of a TAC variable is the value of the said stack object. The ‘variable object’ is the said stack
object itself.

U

u-char
A Unicode® scalar value. A u-char is equivalent to a UTF-32 code unit. The size of a u-char
in a string is two or four bytes (one or two w-chars, respectively). However, a u-char size as
a character is considered to be one unit in length. Note that a surrogate pair is one u-char
(even though it is two w-chars). A surrogate code point is not a u-char (it is a w-char).

\'

variable identifier
A consecutive sequence of characters beginning with an alphabetic character (‘a’ to ‘z’ or ‘A’
to ‘Z’ or exotic Latin characters such as ‘A’), an underscore (_), or an ‘at’ character (@). The
subsequent characters are alphanumeric (alphabetic or ‘0’ to *9”) or underscore. Note that,
by convention, variable identifiers beginning with an ‘at’ character, or an underscore
followed by an alphabetic character or underscore, are reserved for system use. An ETAC
programmer, therefore, is limited to defining variable identifiers containing alphanumeric
characters and underscores, with the first character being an alphabetic character, or the first
two characters being an underscore followed by a digit character. In addition, none of the
strings “if”, “then”, “else”, “endif”, “when”, “is”, “endwhen”, “do”, “repeat”,

with”, “of”, “while”, “exitdo”, “exitdo if”, “donext”,

EGfrom,’, “to”’ “Step’,’ 13
“donext if”, and “void” can be a variable identifier. Variable identifiers are case-
sensitive.

b

The exotic Latin characters are: 2, 2, 3,11, *, °, A, A, A A A A E C,E,E,E,E 1,1,I,I,p N,
O’ O’ O’ O’ O’ @’ U’ U’ U’ U’ Y’ D’ B’ a’ é’ é’ é’) é’) é’)&) g) é) é) é) é) i) i) i) i) 6) ﬁ) é) é) 6) 6) 6) Q)
u, u, G,4,v, b, ¥. Those characters should be used only if necessary.

variable object
The stack object identified by a TAC variable, ETAC variable, or member variable.

W

w-char
A Unicode code point in the BMP (Basic Multilingual Plane). A w-char is equivalent to a
UTF-16 code unit. The size of a w-char in a string is two bytes. However, a w-char size as a
character is considered to be one unit in length. Note that a surrogate code point is one
w-char.

	Preface
	Contents
	Tables and Diagrams
	Document Conventions
	Introduction
	1 The Principles of ETAC and C++ Interaction
	1.1 The ETAC Interface
	1.2 ETAC Code and External TAC Library Interaction
	1.3 ETAC Code and Application Program Interaction
	1.4 C++ Code and External TAC Library Interaction

	2 Programming Guide
	2.1 C++ Compiler Requirements
	2.2 Creating an External TAC Library
	2.2.1 Requirements for Creating an External TAC Library

	2.3 Creating an Application Program to Use ETAC
	2.3.1 Preliminaries for an Application Program to Use ETAC
	2.3.2 Requirements for Incorporating ETAC into an Application Program

	2.4 Interacting with the ETAC Interpreter
	2.5 Calling ETL Functions from C++

	3 Programming Reference
	3.1 The ETAC Interface
	3.2 Resource Interfaces
	3.3 Pre-processor Definitions
	3.3.1 TAC Object Types
	3.3.2 Intrinsic Command Codes
	3.3.3 Intrinsic Operator Codes
	3.3.4 TAC Object Actions
	3.3.5 TAC Object Indicators
	3.3.6 Logical Boolean Values
	3.3.7 Dictionary Binary Flags
	3.3.8 Operational Definitions
	3.3.9 Data Form Indicators

	3.4 Macro Definitions
	3.4.1 Macro Summary
	3.4.2 Return Code Macros
	ccERROR
	ccSUCCESS
	ccRTNCODE
	ccSET_LIBERR

	3.4.3 Resource Interface Definition Macros
	ccSTACKOBJ
	ccSTRING
	ccMEMORY
	ccSEQUENCE
	ccDICTIONARY
	ccDATAOBJECT

	3.4.4 Resource Interface Allocation and Release Macros
	ccNEW
	ccNEW_STACKOBJ
	ccNEW_STRING
	ccNEW_MEMORY
	ccNEW_SEQUENCE
	ccNEW_DICTIONARY
	ccNEW_DATAOBJECT
	ccFREE

	3.4.5 Member Function Execution Macros
	ccCALL
	ccCALLTAC

	3.4.6 Stack Access Macros
	ccPULL
	ccPUSH

	3.4.7 Miscellaneous Macros
	ccSPCHAR

	3.5 ccTAC Class
	3.5.1 Function Summary
	3.5.2 Member Functions
	ccCountToMark
	ccDeleteDict
	ccExecCmd
	ccExecETAC
	ccGetDict
	ccGetDictOfItem
	ccGetObjType
	ccGetTACIF
	ccNew
	ccPop
	ccPull
	ccPush
	ccRelease

	3.6 ccStackObj Class
	3.6.1 Function Summary
	3.6.2 Member Functions
	soCopyObj
	soDuplicateObj

	3.7 ccString Class
	3.7.1 Function Summary
	3.7.2 Member Functions
	strAppend
	strAssign
	strDeleteStr
	strFindAndRepStr
	strGetChar
	strGetStrBuff
	strGetStrPtr
	strInsertStr
	strLength
	strPutChar
	strReleaseStrBuff
	strStrip
	strUCharCount
	strWCharCount

	3.8 ccMemoryBlock Class
	3.8.1 Function Summary
	3.8.2 Member Functions
	mbAllocate
	mbAppendMem
	mbApplyBOM
	mbCopyMem
	mbCvtDataTo
	mbDuplicateMem
	mbExport
	mbGetDataPtr
	mbGetDataSize
	mbGetErrCode
	mbGetMemSize
	mbImport
	mbInsert
	mbLoad
	mbReadWholeFile
	mbRepDataForm
	mbRepDstPath
	mbRepSrcPath
	mbReserveExtraMem
	mbSet
	mbSetDataSize
	mbWriteWholeFile

	3.9 ccSequence Class
	3.9.1 Function Summary
	3.9.2 Member Functions
	sAppendSeq
	sCopySeq
	sDeleteAll
	sDeleteElms
	sDuplicateSeq
	sGet
	sGetElmType
	sInsert
	sPut
	sSize

	3.10 ccDictionary Class
	3.10.1 Function Summary
	3.10.2 Member Functions
	dCopyDict
	dDeleteAll
	dDeleteItem
	dDuplicateDict
	dExecItemObj
	dFindItem
	dGetDictFlags
	dGetDictName
	dGetItemName
	dGetItemObj
	dGetItemType
	dNewItem
	dNumSameItems
	dPutDictFlags
	dPutItemObj
	dSetDictName
	dSetItemName
	dSize

	3.11 ccDataObject Class
	3.12 Helper Functions
	3.12.1 Data Object Helpers
	ccMakeDataObj
	ccGetDataDict

	3.13 External TAC Library Functions
	3.13.1 Mapping Function
	tacGetCCMapping

	3.13.2 ETL Functions
	ETL Function

	3.14 AppETAC Functions
	3.14.1 Initialisation Function
	etacSetAppETAC

	3.14.2 Auxiliary Functions
	etacProcessTACError
	etacRelease
	etacSetDebug
	etacShowAbout

	3.15 Application Program Call-back Function
	3.15.1 Call-back Function
	Call-back Function

	Appendix A: Compatibility Issues
	A.1 Introduction
	A.2 Workaround for Non-MSVC Compilers
	A.3 Possible Future Compatibility Resolution

	Bibliography
	Glossary

